RESEARCH REPORT

A preliminary investigation of immune-related components in the carapace of *Litopenaeus vannamei*

H-Q Li¹, M-Q Wang^{1,2,3*}

¹MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China ²Hainan Key Laboratory of Tropical Aquatic Germplasm, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China

³Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China

This is an open access article published under the CC BY license

Accepted December 13, 2024

Abstract

The carapace of arthropods not only served as a protective exoskeleton, but also performed a wide range of physiological and biochemical functions. In this study, we preliminarily investigated the protein and metabolite components of the carapace of Pacific white shrimp *Litopenaeus vannamei* and their biological functions, focusing on their roles in the process of innate immunity. The structure of the carapace was analyzed by scanning electron microscopy (SEM), while quantitative proteomics and metabolomics were used to investigate its components and functions. A total of 1,108 proteins and 725 metabolites were identified in the carapace of *L. vannamei*, including 69 immune-related proteins and 9 immune-related metabolites. These diverse components are involved in metabolism, environmental responses and immunity, enriched in pathways such as Toll-like receptor, IMD, NOD-like receptor and melanogenesis, demonstrating the shrimp's ability to combat pathogens through both active and passive immune mechanisms. In conclusion, this study demonstrated that shrimp carapace plays an essential role in the innate immune process.

Key Words: Litopenaeus vannamei; carapace; exoskeleton; innate immune

Introduction

Shrimp is an economically important aquatic animal. Shrimp farming is the most rapidly developing industry in aquaculture. *Litopenaeus vannamei* is one of the most important farmed shrimp species, and its farmed production accounts for about 80% of the total annual shrimp production. Nevertheless, the expansion of the global scale of shrimp aquaculture has led to an increase in the frequency of various types of epidemics and diseases, which has become a prominent constraint on the development of the industry (Zhang *et al.*, 2019; N'Souvi *et al.*, 2024).

As a member of the Crustacea, shrimp lacks acquired immune mechanisms and relies on its innate immune system, which comprises both humoral and cellular immunity, to clear invasive pathogens and foreign objects (Li and Xiang 2013a, 2013b; Zhang *et al.*, 2019). The humoral defense of shrimp consists of the phenoloxigen activation system, the agglutination of lectins and the

Corresponding author:

Mengqiang Wang

MOE Key Laboratory of Marine Genetics and Breeding Ocean University of China Qingdao 266003, China E-mail: wangmengqiang@ouc.edu.cn

production of immune factors such as antimicrobial peptides, lysozyme, and hemolysin, which are synthesized and released in blood cells, and cellular immunity is in turn governed and influenced by humoral factors (Li and Xiang, 2013b; Kulkarni et al., 2021). While the carapace covering the entire body surface represents the initial line of defense for the innate immune system of the shrimp. It is often regarded as a physical barrier to the outside world. Several studies have demonstrated that the carapace contains a diverse range of physical, biochemical, and physiological defense components that change in response to pathogen invasion (Thomas and Blanford, 2003; Moret and Moreau, 2012). For instance, the deposition of melanin as a polymer in the carapace can effectively increase its thickness, hardening and cross-linking, thus preventing parasite invasion and increasing the physical defense of the shrimp shell. Melanin also has strong antimicrobial activity. It has also been demonstrated that phenol oxidase forms dark blackened plugs and increases melanin deposition to protect the healing of areas of exoskeletal damage caused by microbial invasion and mechanical injury, as well as the molting process (St. Leger et al., 1988; Hajek and St. Leger, 1994). Antimicrobial peptides produced by epidermal cells,

Fig. 1 Structure of the shrimp carapace. (A) general view; (B) membranous layer; (C) endocuticle; (D) exocuticle and epicuticle (up: exocuticle; down: epicuticle)

such as appendicitis peptides, can enter the carapace during microbial invasion of the damaged cuticle (St. Leger et al., 1988). Additionally, chitin, a major component of shrimp shells, has been demonstrated to possess antipathogenic activity. Two main mechanisms have been identified for the inhibition of microorganisms by chitin. Firstly, the polycationic nature of chitin interferes with bacterial metabolism through electrostatic buildup on the bacterial cell surface (Chung et al., 2004; Je and Kim, 2006). Secondly, chitin enters the nucleus through osmosis and adsorbs onto the DNA molecule to block the transcription of DNA to RNA (Liu et al., 2001). Despite the presence of antimicrobial substances in shrimp carapace, studies on its immune-related components and functions are extremely scarce. Further research is needed to screen immune-related components and elucidate in detail the immune functions of shrimp carapace.

In this study, in order to characterize and further understand the physical barrier function of the shrimp exoskeleton in innate immune process, the three-dimensional structure of the carapace was first observed using SEM and characterized for its immune barrier function. Subsequently, label-free

proteomic quantitative and non-targeted metabolomic assays were performed to determine the composition of the L. vannamei carapace and to explore its immunologically active functional components. In addition to being rich in essential protective and supportive components, shrimp carapace components are deeply involved in various aspects of metabolic reactions and immune regulation. The present study will contribute significantly to the understanding of the structural composition and innate immune functions of the shrimp carapace, and will provide support for the further discovery of indicators of disease resistance traits in the shrimp.

Materials and methods

Sample collections

Healthy adult shrimp *L. vannamei*, 45-50 g in weight and 8-12 cm in length, were collected from a market in Qingdao, China, and kept in a ventilated seawater recirculation tank at a temperature of 18-20 °C. The cephalothorax of the shrimp was removed with forceps in an aseptic environment, weighed, and then shredded with scissors and rinsed with aseptic seawater. A minimum of 500 mg

Fig. 2 Quality control of proteome in shrimp carapace. (A) Mass distribution of protein fractions in shrimp carapace; (B) Distribution of unique peptides in the shrimp carapace proteome; (C) Distribution of peptide lengths of protein fractions; (D) Sequence coverage distribution of protein fractions

of cephalothorax samples was extracted from each shrimp, and different shrimp cephalothorax samples were combined to ensure that each set of samples originated from 3 distinct shrimp individuals. In this study, a total of 27 shrimp were used to prepare 9 parallel samples according to the aforementioned procedure, of which 3 were used for a label-free proteomic assay and 6 for metabolomic assay.

Microstructure observation

The shrimp cephalothorax was stripped, clipped, and washed with 0.1 M phosphate-buffered saline (PBS) buffer for 10 minutes, repeated three times. This was followed by dehydration with ethanol in the order of 30%, 50%, 70%, and 100% by volume for 10 minutes. The samples were then treated with 80%, 90%, and 100% ethanol by volume for 10 minutes each. Following this, the samples were treated with 50% isoamyl acetate-ethanol solution and then subjected to critical point drying and Au-ion sputtering coating under vacuum conditions. Subsequently, the samples were subjected to scanning electron microscope (VEGA3, Tescan, Czech) for photography.

Label-free quantitative proteomics

Shrimp carapace was extracted, quality controlled (QC), and hydrolyzed to peptides by the addition of trypsin at a ratio of 50:1. The peptides

were separated in the liquid phase, then ionized with a nano-electrospray ionization source, and Orbitrap analyzed by Exploris 480 mass spectrometer (Thermo Fisher, USA). The datadependent acquisition (DDA) mode was employed to identify and quantify the proteins in the raw data generated from the mass spectrometry analysis using the MaxQuant 2.1.4.0. The database utilized for the identification was the UniProt library of L. vannamei. The identified proteins were subjected to functional annotation using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Evolutionary Genealogy of Genes: Non-supervised Orthologous Groups (eggNOG) databases.

Metabolomics

Following grinding and centrifugation of the shrimp carapace, metabolites were extracted using an ice methanol solution as a medium. Samples were collected by Liquid chromatography-mass spectrometry (LC-MS) system following machine commands. Chromatographic separation was conducted using a Vanquish Flex UPLC ultra-high pressure liquid chromatography system (Thermo Fisher, USA), and reversed-phase separation was performed on an ACQUITY UPLC T3 column (100 mmx2.1 mm, 1.8 μ m, Waters, UK). The column temperature was set at 40 degrees Celsius, and the

Fig. 3 Functional annotation and classification of proteins in shrimp carapace. (A) GO terms distribution of proteins in shrimp carapace; (B) EggNOG function classification of proteins in shrimp carapace; (C) Enrichment of KEGG pathway in proteins in shrimp carapace

flow rate was 0.3 mL/min. The mobile phases employed were phase A: water (5 mmol/L ammonium acetate + 5 mmol/L acetic acid); and phase B: acetonitrile (LC-MS acetonitrile). The metabolites eluted from the column were detected using a Q-Exactive high-resolution tandem mass spectrometer (Thermo Scientific, USA) in both positive and negative ion modes. Peak picking, grouping, retention time correction, secondary peak grouping, isotope, and adduct labeling were performed on the acquired mass spectrometry data using XCMS software. The raw LC-MS data were processed with XCMS, CAMERA, and metaX tools. Individual ions were identified in conjunction with retention time (RT) and m/z data, the intensity of each peak was recorded, and a three-dimensional matrix containing arbitrarily assigned peak indices, sample names, and ion intensity information was generated. The metabolites were annotated with the KEGG and Human Metabolome Database (HMDB) databases, with an error threshold of 10 ppm. The metabolite molecular formulae were further identified and verified by isotopic distribution measurements. Finally, the metabolite metabolisms were further validated using an in-house database.

Statistical analysis

Statistical analyses are done in R 4.3.1 software. In the proteomics study, for protein identification using MaxQuant software, it was specified that both graph false positives and protein false positives were less than 0.01. The raw intensity values of proteins were normalized to the median. In metabolomics studies, initially, peaks absent in greater than 50% of the QC samples or in greater than 80% of the actual samples were excluded. Subsequently, missing values were filled K-Nearest Neighbours method. using the Probabilistic Quotient Normalization and QC-robust spline batch correction for data normalization. Subsequently, the corrected data were subjected to further filtration, whereby all ions with coefficients of variation exceeding 30% in the QC samples were removed, thus eliminating any potential interference caused by fluctuations in the experimental process.

Results

Carapace structure

A cross-section of the carapace of *L. vannamei* was observed using SEM. The carapace of *L. vannamei* shows 4 main horizontal layers at distinct points: exocuticle, epicuticle, endocuticle, and the membranous layer, which is consistent with the basic cuticle structure of crustaceans (Fig. 1).

Protein recognition and functional enrichments Quality control

Label-free quantitative proteomics analysis of the carapace of *L. vannamei* showed 4218 peptides corresponding to 10476 spectra and 1108 proteins (FDR < 0.01). The top 10 proteins with the highest ion intensity were A0A423TRM8 (Cuticular protein 34), A0A423U9U4 (Pupal cuticle protein 27), A0A3R7NXR2 (Gastrolith protein 30), A0A3R7QJX4 (Sinale VWC domain protein 1), X2KWE4 A0A423TFA4 (Cuticle protein), (Hemocyanin), A0A423TRF2 (Putative structural constituent of cuticle), A0A423TRP9 (Cuticular protein 34), A0A423SVT7 (Putative elastin a), and A0A3R7M0K6 (Peritrophin A, isoform A). The proteomic data have been deposited in the proteomics identification Database (PRIDE, https://www.ebi.ac.uk/pride/) with the accession number PXD047781. For protein mass distribution, the majority of identified proteins (86.6%) were located in the range of molecular weights 10-70 kDa (67.4%), as well as >100 kDa (12.3%) (Fig. 2a). Among all the proteins identified, 54.7% had two or more unique peptides (Fig. 2b). Each mass spectrometer has a measurement range that limits the length of identified peptides, so the distribution of peptide lengths can reflect the appropriateness of enzyme selection. More than 90% of the shrimp carapace protein fragments were within 30 amino acids in length and were predominantly concentrated between 7 and 15 amino acids (Fig. 2c), suggesting high efficiency in protein hydrolysis. In addition, 39.6% of all proteins had a sequence coverage distribution greater than 10%, and 19.6% had a sequence coverage distribution greater than

Table 1	L.	vannamei immune-related	proteins
---------	----	-------------------------	----------

Uniprot ID	Protein Annotation	Function Description
A0A423SI55	Alpha 2 macroglobulin	Shrimp alpha-2-macroglobulin is abundantly
A0A3R7MMK2	Alpha2 macroglobulin isoform 2	expressed in plasma, highly up-regulated in
A0A423UAM4	Alpha2 macroglobulin isoform 2	response to microbial infections, and is
A0A423U6P8	Alpha2 macroglobulin isoform 3	involved in a variety of immune pathways such
A0A3R7LW48	Alpha-2-macroglobulin	as the coagulation system, phagocytosis, and melanization.
Q283P7	Anti-lipopolysaccharide AV-R isoform	Anti-lipopolysaccharide factors are a group of
		multifunctional broad-spectrum antimicrobial peptides that bind to microbial surface molecules, inhibit crustacean
A0A4231C79	Anti-lipopolysaccharide factor	lipopolysaccharide-induced coagulation, and are important components of the shrimp innate immune system.
A0A3R7M6R4	Cathepsin B	Cathepsin L and B play a major role in
A0A3R/SR0/	Cathepsin D	lymphoid organ function and may be
A0A3R7PSB0	cathepsin F-like cysteine peptidase protein	substances isolated in lymphoid organ spheres
A0A423SD78	Cathepsin L	in Penaeus monodon.
A0A423TKK4	Chitin binding Peritrophin-A domain	
A0A423SZM6	Peritrophin	Peritrophin and its analogous proteins can bind
A0A3R7M0K6	Peritrophin A, isoform A	chitin and inhibit bacteria, interact with viral
A0A3R7M838	Peritrophin-44	proteins, and be induced by pathogens.
A0A3R7PKN3	[PUTATIVE] peritrophin-44-like	
A0A3R7MSG4	C-type lectin	
A0A423T3D3	C-type lectin	
A0A423TDI9	C-type lectin	
A0A3R7SPH9	C-type lectin 1	
A0A423TJ07	C-type lectin protein	
A0A423U3B4	C-type lectin-like protein	
A0A3R7MAU7	C-type lectin domain-containing protein	
A0A3R7P3L1	C-type lectin domain-containing protein	C-type lectin and its functional analogs are
A0A423SP91	C-type lectin domain-containing protein	important pattern recognition receptors (PRRs)
A0A423SRW7	C-type lectin domain-containing protein	that play an important role in the innate
A0A423SX67	C-type lectin domain-containing protein	immune system of marine invertebrates.
A0A423U245	C-type lectin containing domain protein	
A0A3R7QRV2	Mannose-binding protein	
A0A423SM49	Mannose-binding protein	
A0A423SY44	Mannose-binding protein	
A0A423THS0	Mannose-binding protein	
A0A423U9P3	Mutant C-type lectin	
A0A3R7PGR8	[PUTATIVE] C-type lectin-like	
A0A3R7SND6	Crustin-like protein	Shell proteins contain the WAP structural
A0A3R7N8L8	PI-crustin 2	domain, which is also found in many proteins
A0A3R7PLA8	WAP domain-containing protein	involved in antimicrobial activity, bacterial
A0A3R7QWD1	WAP domain-containing protein	conditioning, and so on. In decapod
		crustaceans, shell proteins constitute the
		largest group of antimicrobial peptides, with
A0A423T5D9	WAP domain-containing protein	more than 50 isoforms, and exhibit
		antimicrobial activity against both Gram-
0001140	Liest sheely segmets 70	positive and negative bacteria.
Q6GUA8	Heat shock cognate 70	recenter LPS and 6.1.2 glucan binding protein
		regulates shrimp inpate immunity and
A0A423SSL9	[PUTATIVE] Heat shock protein 70	promotes melanogenesis through the phenoloxigen system.
A0A3R7M776	Histone H2A	
A0A423SG35	Histone H2A	Histones or histone-derived peptides produced
A0A423SY25	Histone H2A	by protein hydrolase cleavage have
A0A3R7PJW9	Histone H2B	antimicropial activity and play a crucial role in
A0A3R7Q5C5	Histone H4	the minate infinitione defense of organisms.
A0A423SWD4	Kazal-like domain-containing protein	Most organisms counteract the effects of
· · · · - ·		

A0A423TC23 A0A423TN18 A0A423SMH1 A0A3R7N9K2 A0A423THL6 A0A3R7QAN9 A0A3R7QNE7	Kazal-like domain-containing protein Kazal-type proteinase inhibitor Serine protease inhibitor Serine proteinase inhibitor Serine proteinase inhibitor 7 Serine proteinase inhibitor B3	pathogens and tumor proteases by producing protease inhibitors, which have important roles in modulating host immune defense proteins, inactivating pathogen proteases, coagulation, proPO activation, and antimicrobial activity. Serpin- and Kazal-like protease inhibitors have WAP structural domains, which are essential for their protease inhibition and antimicrobial
A0A3R7QN58	TNF receptor-associated factor 6 (TRAF6)	activity. TRAF6, as a toll pathway downstream component, activates the promoter of antimicrobial peptide genes in the shrimp and plays a key role in antimicrobial and antiviral responses by regulating AMP gene expression.
A0A3R7NEX2	Prophenoloxidase activating enzyme	Cascades of phenol oxidase proteins (proPO)
A0A3R7R002	Prophenoloxidase activating enzyme	circulating in arthropod hemolymph defend
A0A3R7QAY1	Prophenoloxidase activating enzyme III	against pathogens, prevents hemolymph loss,
A0A3R7PF55	Prophenoloxidase activating factor	occurs in crustaceans.
A0A423U5T5	[PUTATIVE] ensconsin-like isoform X8	Involved in the Toll and IMD signaling pathway, NF-kappa B signaling pathway
A0A423SAB7	[PUTATIVE] isochorismatase domain- containing protein 2, mitochondrial-like	Involved in the Rap1 signaling pathway, MAPK signaling pathway, Toll and IMD signaling pathway. Toll-like receptor signaling pathway
A0A423TXT9	[PUTATIVE] serine/threonine-protein phosphatase 6 regulatory ankyrin repeat subunit A-like	
A0A3R7QAA5	Protein Spaetzle	
A0A3R7MQD9	Serine protease	Involved in the Tell and IMD signaling pathway
A0A3R7PDR4	Serine protease	Involved in the foil and find signaling pathway
A0A3R7PUI1	Serine protease	
A0A3R7QDL3	Spaetzle domain-containing protein	
A0A3R7ML74	UBC core domain-containing protein	
A0A423TBP9	UBC core domain-containing protein	

20% (Fig. 2d). The higher peptide coverage reflected the reliability of the identified proteins.

Function annotation

Based on GO, eggNOG and KEGG classification and annotation, the potential functions of the identified proteins in the carapace of *L. vannamei* were analyzed.

GO analysis showed that shrimp carapace proteins could be categorized into 16 biological processes (BP), 15 cellular components (CC), and 18 molecular functions (MF) (Fig. 3a). Most of the proteins in the BP categorization were classified into redox processes (51 proteins), translation (28 proteins) and transporter processes (25 proteins). One of the most significantly enriched subgroups in CC classification was cytoplasm (60 proteins), followed by membrane (29 proteins), cytosol (25 proteins) and integral component of membrane (24 proteins) subgroups. For MF classification, the ATPbinding (65 proteins) subgroup was the most abundant, followed by ribosomal structural components (37 proteins) and metal ion binding (35 proteins).

EggNOG analysis showed that, except for 33 proteins that were not annotated or were annotated as "Poorly characterized", the proteins were classified into three functional categories: Cellular

signaling, Signal transduction process and mechanism and Metabolism (Fig. 3b). The most mapped functional categories in the Cellular process and signaling category were Posttranslational modification, protein turnover, chaperones (149 proteins), followed by Signal transduction mechanisms (88 proteins) and Cytoskeleton (59 proteins). The Information storage and processing category was dominated by Translation, ribosomal structure and biogenesis (67 proteins), followed by Energy production and conversion (96 proteins). In the Metabolism category, the most mapped functional class was Energy production and conversion (96 proteins), followed by Carbohydrate transport and metabolism (62 proteins) and Amino acid transport and metabolism (52 proteins)

KEGG analysis showed that 647 proteins were enriched to regulatory pathways in the carapace proteins of *L. vannamei*, with the five most enriched pathways being Metabolic pathways (map01100, 243 proteins), Carbon metabolism (58 proteins), Huntington's disease (52 proteins), Ribosome (47 proteins), Alzheimer's disease (46 proteins) and Oxidative phosphorylation (45 proteins) (Fig. 3c). In addition, a variety of innate immune pathways were identified, such as the NOD-like receptor signaling pathway (map04621), Melanogenesis (map04916),

Fig. 4 Ion distribution and PCA of metabolites in shrimp carapace. (A) Positive ion m/z-rt plot; (B) Negative ion m/z-rt plot; (C) PCA plot

the AMPK signaling pathway (map04152), and the complement and coagulation cascade (map04610), JAK-STAT pathway (map04630), FoxO signaling pathway (map04068), Toll and IMD signaling pathway (map04624), NF-kappa B signaling pathway (map04620) and MAPK signaling pathway (map04010) (Table S1).

Important immune-related proteins

Based on the functional annotation of the proteins and in conjunction with the research achievements of innate immunity in shrimp, we identified a series of active proteins in the carapace of L. vannamei that may have an immune function, including C-type lectin, Alpha-2-macroglobulin, Serpin, Kazal-type protease inhibitor, HSP70 protein, Serine protease, Cathepsin family and Spätzle protein. In addition, we identified 7 proteins related to melanin synthesis, including Hemocyanin and its L2, L3 subunits, Putative calcyphosin-like protein, GTP binding protein alpha subunit Go, Calmodulin, Heterotrimeric GTP-binding protein alpha subunit Galpha-q. and 6 autophagy-associated proteins, including TNF receptor-associated factor 6 (TRAF6), Cathepsin B, Cathepsin D Cathepsin Serine/threonine-protein kinase TOR and Putative Ras-like protein 2 isoform X1, indicating an active innate immune process such as melanin deposition, autophagy and other processes in shrimp carapace (Table 1).

Metabolite recognition and functional enrichment of shrimp carapace

Quality control

The metabolome of the carapace of *L* vannamei was examined in both positive and negative ion modes, and a total of 26217 positive ion spectra and 17327 negative ion spectra were collected, of which 12111 accessions corresponded to the HMDB database and 9773 accessions corresponded to the KEGG database in the positive ion mode, and 6867 accessions corresponded to the HMDB database and 6115 accessions corresponded to the KEGG database in the negative ion mode, 6867 accessions in the positive ion mode, 6867 accessions in the positive ion mode, 6867 accessions in the positive ion mode and 6115 accessions in the KEGG database. The top 10 metabolites with the highest ion intensity were stearic acid, palmitic acid, betaine, octadecadienoate, trigonelline, oleic acid, eicosapentaenoic acid, docosahexaenoic acid, cis-8,11,14,17-eicosatetraenoic acid and phenylalanine. The metabolomic data obtained in this study have been deposited in the MetaboLights database (https://www.ebi.ac.uk/metabolights/) under the accession number MTBLS9162. For the mass-tocharge ratio and retention time distributions of metabolite ions, positive metabolite ions and negative metabolite ions tended to be concentrated in the average retention time of 4-8 min and the average m/z value between 400 and 800 (Fig. 4a, 4b). The results of the principal component analysis showed that the difference between the quality control samples of metabolites was very small, indicating that the quality control played a good effect (Fig. 4c).

Function annotation

The potential functions of the identified metabolites in the carapace of L. vannamei were analyzed based on HMDB and KEGG classification and annotation. For the HMDB classification of primary metabolites, 25 HMDB super classes were enriched in both positive and negative ion modes with similar distribution patterns. Among them, the super classes with the overwhelmingly highest number of features of metabolites were all Lipids and lipid-like molecules, and the more frequent ones were organic heterocyclic compounds, organic acids and derivatives benzenoids, phenylpropanoids and polyketides and organic oxygen compounds (Fig. 5a). For KEGG functional enrichment of primary metabolites, KEGG level1 function was most predominantly enriched in the Metabolism major group and to a lesser extent in Organismal Systems and others, while KEGG level2 function was also predominantly enriched in the degradationmetabolism of amino acids, carbohydrates, lipids, cofactors, and vitamins metabolism as well as in the degradation-metabolism of xenobiotics (Fig. 5b). Finally, the primary metabolites were further compared with the local in-house database to obtain 725 secondary metabolites, and the results of the comparison were enriched into the KEGG database. A total of 578 different compounds were enriched to 174 KEGG pathways, among which the

Fig. 5 Functional annotation of metabolites in shrimp carapace. (A) Enrichment of HMDB pathway for primary metabolites; (B) Enrichment of KEGG pathway for primary metabolites; (C) Enrichment of KEGG pathway for secondary metabolites

most enriched compounds were Metabolic pathways (map01100), followed by Protein digestion and absorption (map04974), ABC transporters (map02010), **Biosynthesis** of amino acids (map01230), Central carbon metabolism in cancer (map05230), Aminoacyl-tRNA biosynthesis (map00970), and so on (Fig. 5c). Besides, several immune-related signaling pathways were also enriched among others, such as Melanogenesis (map04916), Autophagy-animal (map04140), FoxO signaling pathway (map04068), MAPK signaling pathway (map04010) and Rap1 signaling pathway (map04015) (Table S2).

Important immune/disease-related metabolites

Metabolomics studies have also identified several metabolites that may have potential immune functions, including leukotriene E4, lipoxin A4, prostaglandin A1, prostaglandin H1, thromboxane B3, oleic acid, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and all of them act as antimicrobial agents (Table 2). In addition, tyrosine and cyclic adenosine monophosphate (cAMP) are involved in the process of melanogenesis; cAMP is also involved in the MAPK and Rap1 signaling pathways; L-glutamic acid is involved in the FoxO signaling pathway, and all of these pathways have been shown to play an immune function in shrimp. Additionally, 11 phospholipid molecules containing phosphatidylethanolamine heads that are involved in the autophagy process were also been identified (Table 2).

Discussion

A variety of diseases caused by viruses, bacteria, fungi, and parasitic species pose a significant risk to shrimp at almost all life stages, such as white spot syndrome, which is mainly caused by the white spot syndrome virus (WSSV) (Flegel, 2012), and shrimp infectious hypodermal and hematopoietic necrosis, which is mainly caused by the infectious hypodermal and hematopoietic necrosis virus (IHHNV) (V.M et al., 2023). In addition, other diseases affect shrimp, including acute hepatopancreas necrosis disease mainly caused by Vibrio parahaemolyticus (AHPND) (Lai et al., 2015), and growth retardation in shrimp mainly caused by Enterocytozoon hepatopenaei (EHP) (López-Carvallo et al., 2022). These diseases not only cause significant losses to the fishery economy, but also seriously hinder the sustainable development of blue agriculture. Further study of the innate immune system can assist in the prevention and control of shrimp disease or the breeding for disease resistance.

Recent studies have confirmed that the crustacean carapace not only play an important role in protecting the body, such as maintaining physiological functions and adapting to the environment, but also perform a variety of physiological and biochemical functions (Brey *et al.*, 1993) including resisting parasitic invasion (Moret and Moreau, 2012), antimicrobial (Du *et al.*, 2009; Benhabiles *et al.*, 2012), antioxidant (Seymour *et al.*,

 Table 2 L. vannamei immune-related metabolites

HMDB ID	Metabolite Annotation	Function Description
HMDB0002183	Docosahexaenoic acid (DHA)	EPA and DHA are metabolized to produce lipoxins, resolvins protectins and maresins for anti-
HMDB0001999	Eicosapentaenoic acid (EPA)	inflammatory and antibacterial functions.
HMDB0000207	Oleic acid	Oleic acid has antimicrobial effects by promoting the generation of free radicals and increase the formation of microbiotoxic lipid peroxides through direct action on microbial cell membranes.
HMDB0004385	Lipoxin A4	Lipoxin A4 (LXA4) regulates the inhibition of leukotriene (LT) production to suppress inflammation and modulates immune-related pathways such as NF-κB, PI3K/Akt, JAK-STAT, MAPK, Toll-like receptor, etc.
HMDB0002200	Leukotriene E4	Leukotrienes (LT), prostaglandins (PG), and
HMDB0002656	Prostaglandin A1	Thromboxane B3 (TXB3) play a key role as important
HMDB0013041	Prostaglandin H1	pro-inflammatory factors in regulating the quality and
HMDB0005099	Thromboxane B3	strength of the immune response.

1996), and even inhibiting the proliferation of tumor cells (Kannan et al., 2011) and so on. However, there is no systematic investigation on the immunerelated functions of crustacean carapace. The present study provides the first comprehensive investigation of the carapace components of the shrimp L. vannamei to explore its potential immune physiological and biochemical functions. The structural composition of the shrimp carapace was explored by SEM, and the carapace components systematically analyzed by label-free were quantitative proteomics and quantitative metabolomics techniques in a multi-omics approach. We identified many proteins and metabolites from the carapace of L. vannamei, which are involved in a wide range of physiological processes, including growth and development, metabolism and biosynthesis of carbohydrates, lipids, amino acids and nucleic acids, cellular signaling and intercellular signaling, immunomodulation, heat shock response, oxidative stress, and melanization response.

SEM observation of L. vannamei cuticle showed the same overall consists as other untreated shrimp carapaces for four layers: epicuticle, exocuticle, endocuticle and membranous layer (Fig. 1a) (Rahman and Maniruzzaman, 2023). The epicuticle represents the initial barrier of the shrimp organism against external factors and is characterized by a high concentration of lipids, proteins, and minerals. However, it lacks chitin, which is primarily involved in regulating the organism's osmotic pressure (Fig. 1d) (Lemos and Weissman, 2021). Similar observation has been reported in other literature for the cuticle of the lobster Homarus americanus (Sachs et al., 2006). The inner three layers are composed of chitinprotein fibers arranged in parallel layers, with the direction between the layers undergoing constant changes (Fig. 1c, 1d). The exocuticle is the primary structural layer of the shrimp exoskeleton, formed prior to molting and began to mineralize and darken in color shortly after molting (Fig. 1d). Fibrous platelets are visible in both the exocuticle and endocuticle of L. vannamei. Compared with the

cross-section cuticles of the crab and the lobster *H. americanus* viewed by SEM, the endocuticle of *L. vannamei* was denser than the exocuticle. Moreover, *L. vannamei* has an additional membranous layer secreted by the endocuticle connected to the epidermal cells (Naleway *et al.*, 2016).

The protein composition of the L. vannamei carapace reveals a strong association with oxidative stress defense and metabolic energy production. GO enrichment analysis highlights oxidationreduction processes as the dominant BP, aligning with the carapace's role as the primary barrier environmental oxidative against damage. Additionally, ATP binding proteins are prevalent within the MF category, which complements the enrichment of energy production and conversion pathways in the eggNOG metabolism group. This suggests that the carapace is rich in proteins that support aerobic respiration, essential for meeting its energy demands, as further evidenced by the significant enrichment of the oxidative phosphorylation pathway in KEGG analysis. Notably, numerous innate immune-related KEGG signaling pathways were enriched, including autophagy, lysosomal, apoptosis, MAPK signaling pathway, Ctype lectin receptor signaling pathway, JAK-STAT pathway, NOD-like receptor signaling pathway, Toll and IMD signaling pathways, NF-kappa B signaling pathway, and melanogenesis. These pathways involve two core immune mechanisms in shrimp: the synthesis of antimicrobial peptides and the melanization response. Specifically, shrimp respond to microbial invasion through core immune pathways such as the Toll and IMD signaling pathway and the NF-kB signaling pathway, which modulate the activation of the downstream antimicrobial peptides (AMPs) synthesis pathway as well as the phenol oxidative plasminogen activation cascade-regulated melanization (Tassanakajon et al., 2018). Anti-microbial peptides can effectively inhibit microbial activity in the carapace (Aweya et al., 2021). In contrast, melanin deposition in the carapace, like the insect 's melanization, effectively enhances the thickness, degree of hardening and

cross-linking of the carapace, and possesses a degree of antimicrobial activity (Brey *et al.*, 1993; Li and Xiang, 2013a; Zhang *et al.*, 2019; Kulkarni *et al.*, 2021). Overall, the proteins of *L. vannamei's* carapace have a diverse composition and perform various biological functions including metabolism, environmental response and immunity. Regarding immune function, the carapace retains two core immune mechanisms in the shrimp, thus enabling active and passive defense against pathogens from physiological and biochemical sources.

For the shrimp carapace metabolome, the composition is highly diverse, with lipids as the major metabolites, alongside notable contributions from heterocyclic organic compounds, organic acids and their derivatives, benzene derivatives, phenylpropanoid compounds, and polyketides. Among these, chitin and chitosan stand out for their dual roles as a structural framework and immune barrier, with additional antibacterial activitv demonstrated in vitro. Compared to proteins, research on the immune functions of metabolites remains underdeveloped. However, arthropods are known to produce a broad range of endogenous antimicrobial compounds, such as interferons, cytokines, free radicals, and fatty acids (Das, 2018). Phospholipids, in particular, play critical roles in immune processes; for example, phosphatidylserine involved apoptosis, while is in phosphatidylethanolamine plays a role in autophagy. Diets enriched with phospholipids have been shown to enhance the antioxidant capacity and innate immunity of L. vannamei (Liang et al., 2022). Our findings support the immune relevance of carapace metabolites, as several antimicrobial substances were identified. including leukotrienes. prostaglandins, thromboxanes, and unsaturated fatty acids such as oleic acid, EPA, and DHA. These compounds are central to inflammatory responses and innate immunity, consistent with previous reports (Das, 2018; Majima et al., 2023; Suchitha et al., 2024). For example, lipoxins limit inflammation exerting antimicrobial while properties (Sasaki and Yokomizo, 2019), and unsaturated fatty acids like EPA and DHA contribute to immunomodulation by targeting microbial membranes and promoting the production of free radicals and lipid peroxides. Furthermore, these fatty acids generate bioactive molecules, including resolvins and protectins, which exhibit anti-inflammatory and antibacterial effects (Santa-María et al., 2023). Additionally, tyrosine and cAMP were identified as key compounds linked to melanogenesis, highlighting their role in carapace pigmentation and immunity. Phosphatidylethanolamine derivatives, critical for autophagy, further underscore the functional diversity of carapace metabolites in supporting immune processes.

Overall, these findings highlight the carapace as more than a physical barrier, functioning as a metabolically active and immunologically significant structure. Its complex structure and composition integrates metabolic and immune responses, enabling shrimp to withstand external physiological and biochemical threats effectively.

Conclusion

In the present study, label-free quantitative proteomics and metabolomics techniques are employed to identify proteins and metabolites in the carapace of L. vannamei. The findings demonstrate that, in addition to the protective and supportive components enriched in the shrimp carapace, its components are involved in multiple aspects of environmental stress, metabolic response, and immune response and regulation. It is evident that the shrimp carapace serves a multitude of physiological and biochemical functions beyond mere physical barriers and is intricately linked to innate immune regulation. This is a comprehensive investigation into the protein and metabolite composition of the carapace of L. vannamei in general. This study will contribute to the understanding of the exoskeleton of crustaceans and other aquatic invertebrates and provide new insights into the function of marine invertebrate exoskeleton in innate immunity.

Acknowledgement

This work was supported by the Science and Technology Talent Innovation Project of Hainan Province (KJRC2023A02), the China Agriculture Research System of MOF and MARA (CARS-49), and the Project of Sanya Yazhou Bay Science and Technology City (SKJC-2023-01-004).

References

- Aweya JJ, Zheng Z, Zheng X, Yao D, Zhang Y. The expanding repertoire of immune-related molecules with antimicrobial activity in penaeid shrimps: a review. Rev. Aquacult. 13(4): 1907-1937, 2021.
- Benhabiles MS, Salah R, Lounici H, Drouiche N, Goosen MFA, Mameri N. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll. 29(1): 48-56, 2012.
- Brey PT, Lee WJ, Yamakawa M, Koizumi Y, Perrot S, François M, et al. Role of the integument in insect immunity: epicuticular abrasion and induction of cecropin synthesis in cuticular epithelial cells. Proc. Natl. Acad. Sci. USA. 90(13): 6275-6279, 1993.
- Chung YC, Su YP, Chen CC, Jia G, Wang HL, Wu JC, *et al.* Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta. Pharmacol. Sin. 25(7): 932-936, 2004.
- Das UN. Antibiotic-like action of essential fatty acids. Can. Med. Assoc. J. 132(12): 1350, 1985.
- Das UN. Arachidonic acid and other unsaturated fatty acids and some of their metabolites function as endogenous antimicrobial molecules: A review. J. Adv. Res. 11: 57-66, 2018.
- de la Vega E, O'Leary NA, Shockey JE, Robalino J, Payne C, Browdy CL, *et al.* Antilipopolysaccharide factor in *Litopenaeus vannamei* (LvALF): A broad spectrum antimicrobial peptide essential for shrimp immunity against bacterial and fungal infection. Mol. Immunol. 45(7): 1916-1925, 2008.

- Du Y, Zhao Y, Dai S, Yang B. Preparation of watersoluble chitosan from shrimp shell and its antibacterial activity Innovative. Food. Sci. Emerg. Technol. 10(1): 103-107, 2009.
- Flegel TW. Historic emergence, impact and current status of shrimp pathogens in Asia. J. Invertebr. Pathol. 110(2): 166-173, 2012.
- Hajek AE, St Leger RJ. Interactions Between Fungal Pathogens and Insect Hosts. Annu. Rev. Entomol. 39: 293-322, 1994.
- Je JY, Kim SK. Chitosan Derivatives Killed Bacteria by Disrupting the Outer and Inner Membrane. J. Agric. Food. Chem. 54(18): 6629-6633, 2006.
- Junprung W, Supungul P, Sangklai N, Tassanakajon A. Heat Shock Protein 70 Is a Damage-Associated Molecular Pattern That by Binding to Lipopolysaccharide and β-1,3-Glucan– Binding Protein Activates the Prophenoloxidase System in Shrimp. J. Immunol. 209(3): 582-592, 2022.
- Kannan A, Hettiarachchy NS, Marshall M, Raghavan S, Kristinsson H. Shrimp shell peptide hydrolysates inhibit human cancer cell proliferation. J. Sci. Food Agric. 91(10): 1920-1924, 2011.
- Kulkarni A, Krishnan S, Anand D, Uthaman SK, Otta SK, Karunasagar I, et al. Immune responses and immunoprotection in crustaceans with special reference to shrimp. Rev. Aquacult. 13(1): 431-459, 2021.
- Lai HC, Ng TH, Ando M, Lee CT, Chen IT, Chuang JC, et al. Pathogenesis of acute hepatopancreatic necrosis disease (AHPND) in shrimp. Fish Shellfish Immunol. 47(2): 1006-1014, 2015.
- Lemos D, Weissman D. Moulting in the grow-out of farmed shrimp: a review. Rev. Aquacult. 13(1): 5-17, 2021.
- Li F, Xiang J. Recent advances in researches on the innate immunity of shrimp in China. Dev. Comp. Immunol. 39(1): 11-26, 2013a.
- Li F, Xiang J. Signaling pathways regulating innate immune responses in shrimp. Fish Shellfish Immunol. 34(4): 973-980, 2013b.
- Liang X, Luo X, Lin H, Han F, Qin JG, Chen L, et al. Growth, Health, and Gut Microbiota of Female Pacific White Shrimp, *Litopenaeus vannamei* Broodstock Fed Different Phospholipid Sources. Antioxidants. 11(6): 1143, 2022.
- Liu J, Yu Y, Li F, Zhang X, Xiang J. A new antilipopolysaccharide factor (ALF) gene with its SNP polymorphisms related to WSSVresistance of *Litopenaeus vannamei*. Fish Shellfish Immunol. 39(1): 24-33, 2014.
- Liu XF, Guan YL, Yang D, Li Z, Yao K. Antibacterial action of chitosan and carboxymethylated chitosan. J. Appl. Polym. Sci. 79: 1324-1335, 2001.
- López-Carvallo JA, Cruz-Flores R, Dhar AK. The emerging pathogen *Enterocytozoon hepatopenaei* drives a degenerative cyclic pattern in the hepatopancreas microbiome of the shrimp (*Penaeus vannamei*). Sci. Rep. 12(1): 14766, 2022.
- Majima M, Hosono K, Ito Y, Amano H, Nagashima Y, Matsuda Y, et al. A biologically active lipid, thromboxane, as a regulator of angiogenesis

and lymphangiogenesis. Biomed. Pharmacother. 163: 114831, 2023.

- Moret Y, Moreau J. The immune role of the arthropod exoskeleton. ISJ-INVERT. SURVIV. J. 9(2): 200-206, 2012.
- N'Souvi K, Sun C, Che B, Vodounon A. Shrimp industry in China: overview of the trends in the production, imports and exports during the last two decades, challenges, and outlook. Front. Sustainable Food Syst. 7, 2024.
- Naleway SE, Taylor JRA, Porter MM, Meyers MA, McKittrick J. Structure and mechanical properties of selected protective systems in marine organisms. Mater. Sci. Eng. C. 59: 1143-1167, 2016.
- Patat SA, Carnegie RB, Kingsbury C, Gross PS, Chapman R, Schey KL. Antimicrobial activity of histones from hemocytes of the Pacific white shrimp. Eur. J. Biochem. 271(23-24): 4825-4833, 2004.
- Pongsomboon S, Wongpanya R, Tang S, Chalorsrikul A, Tassanakajon A. Abundantly expressed transcripts in the lymphoid organ of the black tiger shrimp, *Penaeus monodon*, and their implication in immune function. Fish Shellfish Immunol. 25(5): 485-493, 2008.
- Ponprateep S, Vatanavicharn T, Lo CF, Tassanakajon A, Rimphanitchayakit V. Alpha-2macroglobulin is a modulator of prophenoloxidase system in pacific white shrimp *Litopenaeus vannamai*. Fish Shellfish Immunol. 62: 68-74, 2017.
- Rahman MM, Maniruzzaman M. A new route of production of the meso-porous chitosan with well-organized honeycomb surface microstructure from shrimp waste without destroying the original structure of native shells: Extraction, modification and characterization study. Results Eng. 19, 101362, 2023.
- Sachs C, Fabritius H, Raabe D. Hardness and elastic properties of dehydrated cuticle from the lobster *Homarus americanus* obtained by nanoindentation. J. Mater. Res. 21(8): 1987-1995, 2006.
- Santa-María C, López-Enríquez S, Montserrat-de la Paz S, Geniz I, Reyes-Quiroz ME, Moreno M, et al. Update on Anti-Inflammatory Molecular Mechanisms Induced by Oleic Acid. Nutrients. 15(1): 224, 2023.
- Sasaki F, Yokomizo T. The leukotriene receptors as therapeutic targets of inflammatory diseases. Int. Immunol. 31(9): 607-615, 2019.
- Seymour TA, Li SJ, Morrissey MT. Characterization of a natural antioxidant for shrimp shell waste. J. Agric. Food Chem. 44(3): 682-685, 1996.
- Smith VJ, Dyrynda EA. Antimicrobial proteins: From old proteins, new tricks. Mol. Immunol. 68(2, Part B): 383-398, 2015.
- St Leger RJ, Cooper RM, Charnley AK. The effect of melanization of *Manduca sexta* cuticle on growth and infection by *Metarhizium anisopliae*. J. Invertebr. Pathol. 52(3): 459-470, 1988.
- Suchitha GP, Balaya RDA, Prasad TSK, Dagamajalu S. A signaling network map of Lipoxin (LXA4): an anti-inflammatory molecule. INFLAMM. RES. 73: 1099–1106, 2024.
- Tassanakajon A, Rimphanitchayakit V, Visetnan S,

Amparyup P, Somboonwiwat K, Charoensapsri W, et al. Shrimp humoral responses against pathogens: antimicrobial peptides and melanization. Dev. Comp. Immunol. 80: 81-93, 2018.

- Thomas MB, Blanford S. Thermal biology in insectparasite interactions. Trends Ecol. Evol. 18(7): 344-350 ,2003.
- VM A, Raja B, Kesavan K, Vidya R, Sudhakaran R. Isolation and Identification of Pathogens from Shrimp: IHHNV. In: Thomas J, Amaresan N (eds), Aquaculture Microbiology. Springer Protocols Handbooks, Humana, New York, USA, pp 59-68, 2023.
- Wang L, Li F, Wang B, Xiang J. Structure and partial protein profiles of the peritrophic membrane (PM) from the gut of the shrimp *Litopenaeus vannamei*. Fish Shellfish Immunol. 33(6): 1285-1291, 2012.
- Wang PH, Wan DH, Gu ZH, Deng XX, Weng SP, Yu XQ, He JG. *Litopenaeus vannamei* tumor necrosis factor receptor-associated factor 6 (TRAF6) responds to *Vibrio alginolyticus* and white spot syndrome virus (WSSV) infection and activates antimicrobial peptide genes. Dev. Comp. Immunol. 35(1): 105-114, 2011.
- Wang XW, Wang JX. Diversity and multiple functions of lectins in shrimp immunity. Dev. Comp. Immunol. 39(1): 27-38, 2013.
- Zhang X, Yuan J, Sun Y, Li S, Gao Y, Yu Y, et al. Penaeid shrimp genome provides insights into benthic adaptation and frequent molting. Nat. Commun. 10(1): 356, 2019.
- Zhang Y, Söderhäll I, Söderhäll K, Jiravanichpaisal P. Expression of immune-related genes in one phase of embryonic development of freshwater crayfish, *Pacifastacus leniusculus*. Fish Shellfish Immunol. 28(4): 649-653, 2010.

 Table S1 Description of the shrimp carapace proteome

Uniprot ID	Gene name	Description
A0A076NBT3	C7M84_022415	Ubiquitin-60S ribosomal protein L40
A0A0A0RA95	C7M84_022691	Mitochondrial cytochrome c oxidase subunit VIa
A0A159YJS1	C7M84_004155	Flotillin-2
A0A2H4V3C1	C7M84_012595	Cardiac muscle actin
A0A386R1D6	C7M84_003844	Thioredoxin domain-containing protein 17
A0A3G2YPU5	C7M84_005222	Heat shock protein 40
A0A3R7LP93	C7M84_021681	Ubiquitin carboxyl-terminal hydrolase
A0A3R7LQ50	C7M84_020788	14-3-3 epsilon-like transcript variant 1
A0A3R7LQ73	C7M84_020737	Neurogenic locus Notch protein
A0A3R7LQL8	C7M84_020405	Heat shock protein 21
A0A3R7LR38	C7M84_021806	Ras-related protein Rab-2A
A0A3R7LRD0	C7M84_019794	Putative WD repeat-containing protein 65 isoform X2
A0A3R7LRU8	C7M84_019425	Thioredoxin
A0A3R7LS94	C7M84_019081	Putative collagen alpha-2(IV) chain-like
A0A3R7LSG6	C7M84_020426	Putative proteasome subunit alpha type-6-like
A0A3R7LSN5	C7M84_018726	Hemocyanin subunit L1
A0A3R7LST6	C7M84_020172	Prohibitin
A0A3R7LU22	C7M84_019218	beta-N-acetylhexosaminidase
A0A3R7LU97	C7M84_018980	Hemocyte transglutaminase
A0A3R7LUE4	C7M84_018870	Spectrin alpha chain
A0A3R7LW48	C7M84_021513	Alpha-2-macroglobulin
A0A3R7LW71	C7M84_015862	Vegetative cell wall protein gp1-like
A0A3R7LWE3	C7M84_021238	Microsomal triglyceride transfer protein large subunit
A0A3R7LWS7	C7M84_015390	Endoribonuclease
A0A3R7LWT5	C7M84_015406	Venom dipeptidyl peptidase 4
A0A3R7LWZ1	C7M84_020739	Neurogenic locus Notch protein
A0A3R7LXE7	C7M84_020359	Electron transfer flavoprotein-ubiquinone oxidoreductase
A0A3R7LXH7	C7M84_020297	Malate dehydrogenase, cytoplasmic (Fragment)
A0A3R7LXK4	C7M84_014728	Heat shock 70 kDa protein 14
A0A3R7LY46	C7M84_015673	Transferrin
A0A3R7LY50	C7M84_013057	Phosphoglycerate mutase
A0A3R7LYG3	C7M84_013980	Homogentisate 1,2-dioxygenase
A0A3R7LYS2	C7M84_013698	Myosin heavy chain type 2
A0A3R7LYV0	C7M84_014984	Phosphotriesterase-related protein
A0A3R7LZ83	C7M84_019173	Putative furin-like protease 2-like
A0A3R7LZD1	C7M84_014546	FAS1 domain-containing protein
A0A3R7LZE8	C7M84_019010	Farnesyl diphosphate synthase
A0A3R7LZM6	C7M84_014317	Putative coiled-coil domain-containing protein 27
A0A3R7LZS3	C7M84_018728	Hemocyanin subunit L2
A0A3R7M071	C7M84_018356	Iransmembrane protein
AUA3R7MUK6	C7M84_012112	Peritrophin A, isoform A Butative dibudance initialia and like instance VA
AUA3R7MUS1	C7M84_013298	Putative dinydropyrimidinase-like isoform X4
AUA3R7MUZ7	C7M84_011824	Pupal cuticle protein 27
AUA3R7M105	C7M84_013034	4-nydroxypnenylpyruvate dioxygenase
AUA3R7M141	C7M84_017647	Crustacyanin subunit C
	C71084_017498	Putative famin Dmu
	C71084_012594	Cardiac muscle actin
	C71084_011247	Beta-1,3-glucan-binding protein
	C71064_011240	Fubulin alpha chain
	C7M94_012300	Flongation factor 1 alpha
	C7M84_01/090	Liongation racion rapha
AUASK/IVIZIU	C7M24 010930	Cruetocalcin
	C7M24_010900	Olusiocaloni Dutative titin
	C7M84 010616	Putative aminopentidase W07C4 4
	C7M84_010674	r utanve annnupephuase vvu/04.4 DNA balicasa
	C7M84_010074	High mobility group protein HMGLC
	C7M8/ 016021	Lactin
100001110000	071004_010021	Louin

A0A3R7M382	C7M84_010014	isocitrate dehydrogenase (NADP(+))
A0A3R7M3B7	C7M84_010953	Putative cuticle protein
A0A3R7M410	C7M84_015328	GDP-mannose 4,6-dehydratase
A0A3R7M413	C7M84_009329	Strongly chitin-binding protein-1
A0A3R7M416	C7M84_010365	UAP56-interacting factor
A0A3R7M475	C7M84_009168	Putative N-acetylgalactosamine-6-sulfatase
A0A3R7M4E5	C7M84_009027	Beta-agarase
A0A3R7M4R5	C7M84 008709	Slow muscle myosin S1 heavy chain
A0A3R7M573	C7M84_014431	Hcv-binding domain-containing protein
A0A3R7M5H8	C7M84_008105	40S ribosomal protein S20
A0A3R7M5I8	C7M84_008128	Hemocyanin C domain-containing protein
A0A3R7M5R5	C7M84_008810	Fibrous sheath CABYR-binding protein-like
A0A3R7M5U5	C7M84_008757	Sodium potassium-transporting ATPase subunit beta
A0A3R7M666	C7M84_008485	Putative proteasome subunit beta type-2-like
A0A3R7M6K0	C7M84_013349	Putative regucalcin-like
A0A3R7M6R4	C7M84_006968	Cathensin B
Δ0Δ3R7M6\/6	C7M84_007951	NADH-cv/tochrome b5 reductase
Δ0Δ3R7M776	C7M84_012863	Histone H2A
	C7M94 006102	Putativo Solublo NSE attachment protein
A0A3R7101710	C7M84_000103	Putative Soluble NSF attachment protein
A0A3R710030	C7M84_012110	Pentophili-44
AUA3R710039	C71004_000002	Sarbital datudraganaga
	C71064_011993	Solbliol denydlogenase
		Phytanoyi-CoA dioxygenase family protein
	C71VI84_005781	Defin Butativa nagazin 1
AUA3R7M8Q6	C7M84_011601	
A0A3R7M8U0	C7M84_006329	NAD-dependent deacetylase sirtuin-2
AUA3R7M8V7	C7M84_006290	WAP domain-containing protein (Fragment)
A0A3R7M921	C7M84_011327	Putative DNA/RNA-binding protein KIN17
A0A3R7M947	C7M84_011274	Iransaldolase
A0A3R7M956	C7M84_011249	Beta-1,3-glucan-binding protein
A0A3R7M9P9	C7M84_005609	Transmembrane emp24 domain-containing protein
A0A3R7MA32	C7M84_010512	Profilin
A0A3R7MA69	C7M84_004185	Carrier domain-containing protein
A0A3R7MA76	C7M84_005100	Protein NipSnap
A0A3R7MAB0	C7M84_010383	Protein kinase domain-containing protein
A0A3R7MAR1	C7M84_003714	Tricalbin-1
A0A3R7MAU7	C7M84_009993	C-type lectin domain-containing protein
A0A3R7MB02	C7M84_003456	Hemocyanin
A0A3R7MB03	C7M84_004460	Dihydropteridine reductase
A0A3R7MB09	C7M84_003428	GDP-L-fucose synthase
A0A3R7MBI9	C7M84_003030	Isocitrate dehydrogenase [NAD] subunit, mitochondrial
A0A3R7MC01	C7M84_002649	26S proteasome regulatory subunit 7
A0A3R7MC29	C7M84_009035	ADP/ATP translocase
A0A3R7MC33	C7M84_002578	Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogena
A0A3R7MCL9	C7M84_002199	Heat shock protein
A0A3R7MD23	C7M84_001876	FTP domain-containing protein
A0A3R7MD77	C7M84_008306	DM5 domain-containing protein
A0A3R7MDD5	C7M84_002427	Putative fibrinogen-like protein 1
A0A3R7MDX3	C7M84_002019	LAM_G_DOMAIN domain-containing protein
A0A3R7ME47	C7M84_007587	RNA-directed DNA polymerase
A0A3R7MEN4	C7M84_007122	Fructose-bisphosphate aldolase
A0A3R7MF99	C7M84_000343	Protein singed
A0A3R7MFH7	C7M84_000101	Putative 2-oxoglutarate dehydrogenase, mitochondrial isoform X5
A0A3R7MFJ8	C7M84_006449	Uncharacterized oxidoreductase
A0A3R7MFW0	C7M84_000677	Putative sulfite oxidase, mitochondrial (Fragment)
A0A3R7MFX0	C7M84 006221	Putative urocanate hydratase
A0A3R7MFY8	C7M84 006140	Tubulin-specific chaperone D
A0A3R7MG31	C7M84 025165	DUF3421 domain-containing protein
A0A3R7MG35	C7M84 021378	Galactose mutarotase
A0A3R7MG76	C7M84 000420	Calcified cuticle protein CP19.0 isoform A
A0A3R7MG86	C7M84_000414	Putative monocarboxylate transporter 13-like isoform X1

A0A3R7MGW1 C7M84 020730 Neurogenic locus Notch protein A0A3R7MGX0 C7M84_020723 Tubulin beta-2 chain T-complex protein 1 subunit gamma A0A3R7MH58 C7M84_004987 A0A3R7MHG5 C7M84_020311 SCP2 domain-containing protein A0A3R7MHH3 C7M84_024980 Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 1 A0A3R7MHL2 C7M84_024880 Basement membrane-specific heparan sulfate proteoglycan core protein C7M84_024016 A0A3R7MHN6 peptidylprolyl isomerase C7M84_024581 A0A3R7MHZ7 H(+)-transporting two-sector ATPase A0A3R7MIL4 C7M84_023228 F-actin-capping protein subunit beta A0A3R7MIM3 C7M84_019467 Crustacyanin subunit A C7M84_019484 A0A3R7MIN0 Crustacyanin subunit A A0A3R7MIT8 C7M84_019348 Fibroin heavy chain-like Saccharopine dehydrogenase-like oxidoreductase A0A3R7MIU1 C7M84_023970 A0A3R7MJ56 C7M84_003263 Growth and transformation-dependent protein A0A3R7MJ77 C7M84_022711 40S ribosomal protein S23 A0A3R7MJJ9 C7M84_018768 GrpE protein homolog 2, mitochondrial A0A3R7MJN5 C7M84_022334 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10 A0A3R7MJQ0 C7M84_023271 Eukaryotic translation initiation factor 3 subunit H A0A3R7MJV2 C7M84 002630 Tyrosine--tRNA ligase A0A3R7MJX1 C7M84 002597 40S ribosomal protein S3a A0A3R7MK72 C7M84 002401 Putative RNA-binding protein 4 isoform X2 A0A3R7MK80 C7M84 022825 Takeout A0A3R7MKF3 C7M84_018031 Eukaryotic peptide chain release factor subunit 1 A0A3R7MKL2 C7M84_017767 DNA primase large subunit A0A3R7MKN3 C7M84_016035 Clip domain-containing protein (Fragment) C7M84 014327 fumarate hydratase A0A3R7MKT2 C7M84_001895 Cytochrome b-c1 complex subunit 7 A0A3R7MKT6 C7M84_014050 A0A3R7MKT9 Putative sorting nexin-12 isoform X2 A0A3R7MKU8 C7M84_013680 Protein quiver C7M84_001848 A0A3R7MKW0 Clip domain serine proteinase C7M84_022264 A0A3R7ML54 Putative calcium-activated chloride channel regulator 2 C7M84_007144 UBC core domain-containing protein A0A3R7ML74 A0A3R7MLJ1 C7M84_021888 CARDB domain-containing protein (Fragment) A0A3R7MM06 C7M84_016830 Replicase polyprotein 1a A0A3R7MM41 C7M84_000756 Putative peroxidase-like protein Putative multifunctional protein ADE2-like A0A3R7MM97 C7M84_013480 A0A3R7MMD6 C7M84_016558 Glycine cleavage system P protein A0A3R7MME4 C7M84_016528 Putative Sarcoplasmic calcium-binding protein A0A3R7MME6 C7M84_010758 Protein obstructor-E C7M84_007739 Alpha2 macroglobulin isoform 2 A0A3R7MMK2 C7M84_005801 Putative cytochrome b-c1 complex subunit 2, mitochondrial A0A3R7MMN9 C7M84_016002 Putative histone-lysine N-methyltransferase ash1-like A0A3R7MN94 C7M84_025025 Sulfotransferase family cytosolic 1B member 1 A0A3R7MNJ3 A0A3R7MNP1 C7M84_015694 60S ribosomal protein L27a A0A3R7MNV6 C7M84 015581 Lysosomal alpha-glucosidase A0A3R7MP37 C7M84 024610 60S ribosomal protein L28 A0A3R7MP64 C7M84 015402 Titin-like C7M84 024297 Probable tRNA(His) guanylyltransferase A0A3R7MPK9 C7M84 024205 A0A3R7MPQ8 D-3-phosphoglycerate dehydrogenase C7M84_014955 A0A3R7MPR7 Putative heterogeneous nuclear ribonucleoprotein A1, A2/B1-like isoform X1 C7M84_024003 A0A3R7MPY8 Adenosine kinase C7M84_014585 A0A3R7MQD9 Serine protease A0A3R7MQJ1 C7M84_023560 Secreted protein C7M84_023450 60S ribosomal protein L5 A0A3R7MQM8 A0A3R7MQU7 C7M84_023302 Putative myosin heavy chain, non-muscle-like A0A3R7MR04 C7M84_014184 ADP-ribosylation factor GTPase-activating protein 2 A0A3R7MRF3 C7M84_013920 Carbonic anhydrase A0A3R7MS58 C7M84_013384 Tubulin beta chain A0A3R7MS79 C7M84_013322 Heat shock protein 60 A0A3R7MSG4 C7M84_022049 C-type lectin A0A3R7MSS7 C7M84_012915 40S ribosomal protein S7

A0A3R7MT65	C7M84_017770	H+ ATPase
A0A3R7MTG0	C7M84_013488	Lectin 3
A0A3R7MTH3	C7M84_012484	Tetratricopeptide repeat protein 36
A0A3R7MTP4	C7M84_008895	UTPglucose-1-phosphate uridylyltransferase
A0A3R7MUX2	C7M84_011383	Melanization interactin protein
A0A3R7MUZ7	C7M84_011321	Gelsolin
A0A3R7MV24	C7M84_011242	Beta-1,3-glucan-binding protein
A0A3R7MVJ7	C7M84 010897	Aspartate aminotransferase
A0A3R7MW47	C7M84 010543	Death-associated protein-like
A0A3R7MW78	C7M84_010492	ADP-ribosvlation factor 1
A0A3R7MXU9	C7M84 009355	NodB homology domain-containing protein
A0A3R7MXY5	C7M84_009266	Cuticle protein AMP3
A0A3R7MY55	C7M84_009103	DI GAP1
A0A3R7MYA0	C7M84_009024	VWED domain-containing protein
A0A3R7MYQ8	C7M84_008696	Putative histidine triad nucleotide-binding protein 2 mitochondrial-like
A0A3R7MYS0	C7M84_008666	K1109 (Eragment)
A0A3R7MZN0	C7M84_008122	40S ribosomal protein S4
A0A3R7MZV2	C7M84_008017	Phosphate carrier protein mitochondrial
A0A3R7N109	C7M84_006594	Clin domain serine proteinase 1
A0A3R7N1S8	C7M84_006567	Metallophos domain-containing protein
A0A3R7N2L2	C7M84_005909	Ribosomal protein I 7
A0A3R7N222	C7M84_005400	Thioredovin-disulfide reductase
	C7M84_00493	Inconventional myosin-6 (Fragment)
A0A3R7N3Q3	C7M84_004378	Putative ubiquitin carbovul-terminal bydrolase 4 isoform X1
A0A3R7N413	C7M84_004378	Leucine_rich_repeat_containing protein 14
A0A3R7114112	$C7N04_004220$	40S ribesemal protein SS
	$C71004_003947$	405 fibosofiai protein 56
	$C71004_003902$	Childemain containing protein 1
	C71004_003306	En domain-containing protein 1 Deb CDD dissociation inhibitor
	C71V184_002614	Rab GDP dissociation inhibitor
AUA3R/N/38	C7M84_002314	Actin-related protein 2/3 complex subunit
AUA3R/N/99	C7M84_002150	Putative ribosome-binding protein 1 isoform X4 (Fragment)
AUA3R/N/11	C7M84_001761	265 proteasome non-ATPase regulatory subunit 2
AUA3R/N/W4	C7M84_001695	Ubiquitin-like domain-containing protein
A0A3R7N886	C7M84_001377	Myosin essential light chain
AUA3R/N8L8	Crula-6	PI-crustin 2
AUA3R7N980	C7M84_000601	Peptidyl-prolyl cis-trans isomerase
A0A3R7N9B8	C7M84_000503	Pro-resilin protein
A0A3R7N9H7	C7M84_000416	Masquerade-like protein (Fragment)
A0A3R7N9K2	C7M84_000333	Serine proteinase inhibitor
A0A3R7NA33	C7M84_025409	RuvB-like helicase
A0A3R7NAC3	C7M84_025144	Tryptophan 2,3-dioxygenase
A0A3R7NAG9	C7M84_025048	Lipid storage droplet protein
A0A3R7NAP1	C7M84_024882	Basement membrane-specific heparan sulfate proteoglycan core protein
A0A3R7NBX4	C7M84_023821	Peptidyl-prolyl cis-trans isomerase (Fragment)
A0A3R7NBY5	C7M84_023808	Putative 26S proteasome non-ATPase regulatory subunit 14
A0A3R7NCQ6	C7M84_023157	26S protease regulatory subunit 4
A0A3R7NCZ7	C7M84_022939	60S ribosomal protein L12
A0A3R7ND47	C7M84_022826	FAS1 domain-containing protein
A0A3R7NDA8	C7M84_022687	Tail muscle elongation factor 1 gamma
A0A3R7NDF4	C7M84_022598	Uncharacterized protein
A0A3R7NDT7	C7M84_022329	Elongin-C
A0A3R7NDX5	C7M84_022265	Fibroin heavy chain-like
A0A3R7NE38	C7M84_022082	Calpain B (Fragment)
A0A3R7NEX2	C7M84_015962	Prophenoloxidase activating enzyme
A0A3R7NNF1	C7M84_019618	Transmembrane protein
A0A3R7NP30	C7M84_019198	Neurofilament heavy polypeptide (Fragment)
A0A3R7NP48	C7M84_019121	Peptidase S1 domain-containing protein
A0A3R7NPL9	C7M84_018727	Hemocyanin subunit L2
A0A3R7NPN3	C7M84_018694	Superoxide dismutase
A0A3R7NRQ6	C7M84_017089	Elongation factor 1-alpha
A0A3R7NRV9	C7M84_016985	NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial

A0A3R7NRW6	C7M84_016954	SPARC-related modular calcium-binding protein 2
A0A3R7NS31	C7M84_016751	EGF-like domain-containing protein (Fragment)
A0A3R7NSG1	C7M84_016474	GH18 domain-containing protein
A0A3R7NTF9	C7M84_015718	MOSC domain-containing protein
A0A3R7NTQ3	C7M84_015514	Chitin-binding type-2 domain-containing protein
A0A3R7NUF2	C7M84_014948	Gastrolith protein
A0A3R7NUJ0	C7M84_014845	Putative rho GDP-dissociation inhibitor 2 (Fragment)
A0A3R7NUR5	C7M84 014673	Ig-like domain-containing protein
A0A3R7NWG1	C7M84_013216	Extensin-like
A0A3R7NWY8	C7M84_012785	MICOS complex subunit
A0A3R7NXR2	C7M84_012114	Gastrolith protein 30
A0A3R7NXU5	C7M84_012048	Laminin subunit gamma-3
A0A3R7NYM0	C7M84_011273	NADH-ubiquinone oxidoreductase 39 kDa subunit
	C7M84_011248	Beta-1 3-alucan-binding protein
	C7M84_010969	26S protease regulatory subunit 6A
4043R7N7/8	C7M84_010820	Titin
Δ0Δ3R7N783	C7M84_010754	Putative eukarvotic pentide chain release factor GTP-hinding subur
Δ0Δ3R7P0\\/5	C7M84_009271	Cuticle protain AM/CP111/
A0A3R7P17/	C7M84_009012	ANK PED REGION domain-containing protein (Fragment)
A0A3R71 174 A0A3P7P1C7		Four and a half LIM domains protoin 2
A0A3R7F1C7		Aminopontidaça
	C71004_007121	C tune lectin demoin containing protain
AUASK/PSLI	C71004_000993	C-type lectin domain-containing protein
AUA3R7P4C0	C71004_000377	
AUA3R7P4D7	C7M84_021395	Palanharus lusiferia 2 managurangan pan astalutis subunit
AUA3R7P4H1		Opiophorus-lucienn 2-monooxygenase non-catalytic subunit
AUA3R7P4J3	C7M84_021247	Apoptosis-inducing factor 1, mitochondrial
AUA3R7P4W6	C7M84_020923	I-complex protein 1 subunit epsilon
AUA3R7P4Z4	C7M84_005894	Separase
AUA3R7P543	C7M84_020736	Neurogenic locus Notch protein
AUA3R7P558	C7M84_020685	G-protein coupled receptor 64
A0A3R7P5D9	C7M84_020533	Metalloendopeptidase
A0A3R7P5Q2	C7M84_005208	Putative granulins-like isoform X3
A0A3R7P608	C7M84_020015	NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial
A0A3R7P657	C7M84_004822	Putative serine/threonine-protein phosphatase PP1-beta catalytic subunit-like
A0A3R7P6G3	C7M84_004579	FAS1 domain-containing protein
A0A3R7P6R2	C7M84_004372	Putative phosphatidylinositol transfer protein beta isoform isoform X1
A0A3R7P6V3	C7M84_019469	Crustacyanin subunit C
A0A3R7P724	C7M84_019389	Spermatogonial stem-cell renewal factor
A0A3R7P7D5	C7M84_019118	Putative hemocytin
A0A3R7P7M0	C7M84_018950	Retinitis pigmentosa 1-like 1 protein
A0A3R7P7N6	C7M84_018903	Extended synaptotagmin-like protein 2a (Fragment)
A0A3R7P8U6	C7M84_002540	phosphoserine transaminase
A0A3R7P9H1	C7M84_001986	Putative dehydrogenase/reductase SDR family member 4-like
A0A3R7P9I3	C7M84_002017	Ras protein (Fragment)
A0A3R7P9X4	C7M84_017214	protein disulfide-isomerase
A0A3R7PA29	C7M84_001471	Ubiquitin carboxyl-terminal hydrolase
A0A3R7PA33	C7M84_017087	Troponin H
A0A3R7PAD7	C7M84_016871	ATP citrate synthase (Fragment)
A0A3R7PAF4	C7M84_016834	Rap1 GTPase-GDP dissociation stimulator 1-B
A0A3R7PAJ9	C7M84_016727	Polypyrimidine tract-binding protein 1
A0A3R7PAK4	C7M84_001080	Reticulon
A0A3R7PAL1	C7M84_001061	BOWMAN_BIRK domain-containing protein
A0A3R7PAP7	C7M84_016642	Vigilin
A0A3R7PAT7	C7M84_016573	Moesin/ezrin/radixin homolog 1
A0A3R7PAZ3	C7M84_016427	Glycerol-3-phosphate dehydrogenase [NAD(+)]
A0A3R7PBK1	C7M84_021769	Protein TANC2
A0A3R7PBR0	C7M84_015895	Actin T2
A0A3R7PBU9	C7M84_021485	SuccinateCoA ligase [ADP/GDP-forming] subunit alpha, mitochondrial
A0A3R7PC66	C7M84 025262	60S acidic ribosomal protein P2
A0A3R7PCD0	C7M84 020968	Putative prostatic acid phosphatase
A0A3R7PCP7	C7M84 015129	Farnesoic acid O-methyltransferase (Fragment)
-		

A0A3R7PCQ1	C7M84_024778	Putative antimicrobial peptide
A0A3R7PCW4	C7M84_020447	Putative hemocyte protein-glutamine gamma-glutamyltransferase
A0A3R7PD39	C7M84_014802	10-formyltetrahydrofolate dehydrogenase
A0A3R7PDE1	C7M84_024181	Putative stathmin isoform X3
A0A3R7PDI4	C7M84_024081	Acyl-CoA-binding protein
A0A3R7PDR4	C7M84_023841	Serine protease
A0A3R7PDY2	C7M84 014112	Chemosensory protein
A0A3R7PE77	C7M84 019302	Putative beta-ureidopropionase-like
A0A3R7PE80	C7M84 019277	Peptidase M3 domain-containing protein
A0A3R7PEB6	C7M84 019142	Receptor for activated protein kinase c1
A0A3R7PEF6	C7M84 013600	arginine kinase
A0A3R7PEG6	C7M84_023143	Cuticle protein 6
A0A3R7PEJ3	C7M84_022967	Putative calumenin
A0A3R7PEN2	C7M84_018729	Hemocyanin
A0A3R7PEP7	C7M84_018665	Ribosomal protein
A0A3R7PE01	C7M84_018642	pentidylprolyl isomerase
A0A3R7PE55	C7M84_022024	Prophenoloxidase activating factor
A0A3R7PF65	C7M84_012255	Protein FAM136A
	C7M84_017607	Linase
	C7M84_016036	Trynsin-like serine protesse
	C7M84_017350	Putative 14 kDa phosphohistidine phosphatase-like
	$C7M04_017333$	Putative neurotrupsin like
	C7M04_014331	Hotorogonoous pueloar ribopuelooprotoin L
AUA3R7FFQ9	C71004_017022	
AUA3R7FGUU		V-type proton Ar Pase suburill G
AUA3R/PG04		
AUA3R7PG23	C7M84_011053	COB-domain containing protein
AUA3R7PG69	C7M84_016522	Neuroglian
AUA3R7PGB4	C7M84_010814	3-ketoacyl-CoA thiolase, mitochondrial
AUA3R7PGD8	C7M84_016336	Putative prolyi 4-nydroxylase subunit alpha-1-like isoform X1
AUA3R/PGE6	C7M84_016311	Sugar transporter 8
AUA3R7PGN4	C7M84_016087	
AUA3R/PGP1	C7M84_010495	glutamate denydrogenase [NAD(P)(+)]
A0A3R7PGR8	C7M84_016022	Putative C-type lectin-like
A0A3R7PHF2	C7M84_009834	Coatomer subunit beta
A0A3R7PHQ6	C7M84_015080	Putative alpha-aminoadipic semialdehyde synthase, mitochondrial isoform X1
A0A3R7PHR6	C7M84_015004	Calponin-homology (CH) domain-containing protein
A0A3R7PHS0	C7M84_009328	Strongly chitin-binding protein-1
A0A3R7PHS5	C7M84_009305	Ras-associating domain-containing protein
A0A3R7PI18	C7M84_009026	Beta-1,3-glucan-binding protein
A0A3R7PI62	C7M84_014580	Pyruvate dehydrogenase E1 component subunit beta
A0A3R7PII9	C7M84_014210	Putative cytosolic non-specific dipeptidase
A0A3R7PIJ5	C7M84_014191	Calcified cuticle protein CP19.0 isoform A
A0A3R7PIK3	C7M84_008512	phospholipase D
A0A3R7PIL9	C7M84_008479	Beta,beta-carotene 15,15'-monooxygenase
A0A3R7PIQ1	C7M84_014059	Hyp2
A0A3R7PIV4	C7M84_013916	CWF19-like protein 2
A0A3R7PJ66	C7M84_013640	NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 7
A0A3R7PJ90	C7M84_007941	Selenoprotein W2
A0A3R7PJE5	C7M84_013351	Regucalcin
A0A3R7PJR9	C7M84_007384	Vitelline membrane outer layer 1-like protein
A0A3R7PJW9	C7M84_006387	Histone H2B
A0A3R7PK45	C7M84_012671	Tubulin alpha chain
A0A3R7PKG4	C7M84_006714	Beta-1,3-glucan-binding protein
A0A3R7PKM8	C7M84_006569	inorganic diphosphatase
A0A3R7PKN3	C7M84_012118	Putative peritrophin-44-like
A0A3R7PL10	C7M84_011817	alkaline phosphatase (Fragment)
A0A3R7PL42	C7M84_006115	RNA helicase
A0A3R7PL65	C7M84_011623	Serine proteinase
A0A3R7PLA8	C7M84_011525	WAP domain-containing protein
A0A3R7PLF1	C7M84_005780	Reverse transcriptase domain-containing protein
A0A3R7PLU5	C7M84_011035	Flotillin-1

A0A3R7PLZ1 C7M84 005089 Putative selenium-binding protein 1 A0A3R7PMB6 C7M84_004819 Adenylyl cyclase-associated protein A0A3R7PND5 C7M84_003837 Rhodanese domain-containing protein A0A3R7PNG1 C7M84_009489 Proteasome subunit alpha type C7M84_003641 A0A3R7PNK0 Putative collagen alpha-1(IX) chain isoform X9 A0A3R7PNK7 C7M84_003614 Malate dehydrogenase C7M84_003492 A0A3R7PNP1 Moesin/ezrin/radixin homolog 1 A0A3R7PNZ6 C7M84_003169 Outer dense fiber protein 3 A0A3R7PP12 C7M84_008996 Putative long-chain-fatty-acid--CoA ligase 4 A0A3R7PP15 C7M84_003115 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 3 Putative mediator of RNA polymerase II transcription subunit 12-like A0A3R7PP38 C7M84_003029 A0A3R7PPB6 C7M84_008684 Sorting nexin-2 A0A3R7PPS2 CPAP1 Cuticular protein A0A3R7PPY4 C7M84_002316 Tubulin-specific chaperone A A0A3R7PPZ0 C7M84_008115 Translation inhibitor L-PSP ribonuclease A0A3R7PR20 C7M84_007123 Fructose-bisphosphate aldolase A0A3R7PRC1 C7M84_001059 [phosphatase 2A protein]-leucine-carboxy methyltransferase A0A3R7PRD0 C7M84_001073 Neutral alpha-glucosidase AB A0A3R7PS73 C7M84 000351 Nesprin-1-like A0A3R7PS80 C7M84 006141 Cysteine-rich membrane protein 2 A0A3R7PSB0 C7M84 006040 Cathepsin F-like cysteine peptidase protein A0A3R7PSD8 C7M84 005928 Mucin-19-like A0A3R7PSD9 C7M84_000113 Histone H1 A0A3R7PSE6 C7M84_000100 Putative 2-oxoglutarate dehydrogenase, mitochondrial A0A3R7PSG3 C7M84_000069 Smoothelin domain-containing protein A0A3R7PSX2 C7M84 005324 Myosin essential light chain C7M84 005137 ALG-2 interacting protein x A0A3R7PT21 C7M84_005178 aldehyde dehydrogenase (NAD(+)) A0A3R7PT34 C7M84_024853 A0A3R7PTA0 WW domain-binding protein 2 C7M84_004824 Myosin light chain 2 A0A3R7PTG0 C7M84_024258 Ig-like domain-containing protein A0A3R7PU04 A0A3R7PUI1 C7M84_023839 Serine protease C7M84_023547 SHSP domain-containing protein A0A3R7PUW0 A0A3R7PUZ2 C7M84_003479 Hemocyanin A0A3R7PVP7 C7M84_021545 Hemocyanin A0A3R7PVP8 C7M84_022778 Chorion peroxidase A0A3R7PVQ7 C7M84_021515 glutathione transferase A0A3R7PVV2 C7M84_022603 Chitinase-3-like protein 3 A0A3R7PVZ7 C7M84_022494 26S proteasome non-ATPase regulatory subunit 12 A0A3R7PW33 C7M84_002386 Putative fibrillin-2-like A0A3R7PW84 C7M84_002269 Glyceraldehyde-3-phosphate dehydrogenase A0A3R7PW98 C7M84_002251 Glutathione S-transferase 1-like A0A3R7PWQ1 C7M84_021341 Putative long-chain-fatty-acid--CoA ligase 4 isoform X1 C7M84_001798 A0A3R7PWQ4 1,4-alpha-glucan branching enzyme A0A3R7PX15 C7M84 015964 Serine protease A0A3R7PX93 C7M84 019801 Alkaline phosphatase A0A3R7PX94 C7M84 001281 Putative hemicentin-1-like A0A3R7PXF2 C7M84 019694 Heat shock protein 83 A0A3R7PXW2 C7M84 011022 Putative UPF0462 protein C4orf33-like (Fragment) A0A3R7PYG5 C7M84_018666 Calreticulin A0A3R7PYH8 C7M84_000227 Translocon-associated protein subunit delta A0A3R7PYJ5 C7M84_000177 Putative poly(RC)-binding protein 3 isoform X1 A0A3R7PYM6 C7M84_000080 Beta-hexosaminidase A0A3R7PYP1 C7M84_018442 Putative Thrombospondin-3 A0A3R7PYQ2 C7M84_025593 Prothymosin alpha-like A0A3R7PZ26 C7M84_018064 4F2 cell-surface antigen heavy chain A0A3R7Q0J4 C7M84_016594 Peroxinectin (Fragment) A0A3R7Q0U8 C7M84_023770 Cytochrome c oxidase subunit 5A, mitochondrial A0A3R7Q123 C7M84_016210 Hemocyanin A0A3R7Q185 C7M84_016089 SCP domain-containing protein C7M84_023148 Cuticle protein 6 A0A3R7Q1P4

A0A3R7Q1R0	C7M84_015760	phospholipase D
A0A3R7Q1X6	C7M84_022951	Pupal cuticle protein 27
A0A3R7Q288	C7M84_015399	Putative cAMP-dependent protein kinase type II regulatory subunit isoform X2
A0A3R7Q2A6	C7M84_015332	Selenoprotein M
A0A3R7Q2C8	C7M84_015285	Fibulin 2
A0A3R7Q2U0	C7M84_014872	Superoxide dismutase [Cu-Zn]
A0A3R7Q305	C7M84_014722	Cofilin/actin-depolymerizing factor
A0A3R7Q373	C7M84 014564	Glutathione S-transferase
A0A3R7Q393	C7M84 021889	Putative filamin-A isoform X4
A0A3R7Q3S1	C7M84_016817	Putative mucin-17-like
A0A3R7Q420	C7M84 013897	Putative glycinetRNA ligase
A0A3R7Q478	C7M84_008897	peptidylprolyl isomerase
A0A3R7Q4T3	C7M84_013260	Extensin-like
A0A3R704U6	C7M84_013231	IHE-like carboxylesterase 1
A0A3R70505	C7M84_012868	
A0A3R70635	C7M84_012260	NADH dehydrogenase
A0A3R70691	C7M84_012119	Protein obstructor.E
A0A3R70707	C7M84_011599	CGMP-dependent protein kinase
A0A3P70736	C7M84_011533	60S ribosomal protein L 13a
A0A3R7Q730	$C7M94_011533$	Butativo calevahoria liko protoin
A0A3R7Q743	$C7M84_011530$	Fuldrive calcyphosin-like protein Ubiquinal extechrome a reductore. Piecka iron sulfur polypoptide 1
	C71004_011010	Dutative very long chain energific and CoA debudregenees, mitschandriel
AUASKIQIPS	C71004_011000	Putative very long-chain specific acyi-CoA denydrogenase, mitochondhai Drebeble imidezelenenrenienese
AUASKIQIKO	C71064_011002	
AUA3R7Q716	C71084_010973	Lamin Dmu
AUA3R7Q8E3	C7M84_010460	3-oxoacyi-lacyi-carrier-proteinj reductase
A0A3R7Q994	C7M84_021832	40S ribosomal protein S8
AUA3R7Q9D1	C7M84_021732	Giycos_transt_1 domain-containing protein
A0A3R7Q9V6	C/M84_021149	Prefoldin subunit 4
A0A3R7QA34	C7M84_020853	
A0A3R7QA79	C7M84_020724	Putative tubulin beta-1 chain
A0A3R7QAA5	C7M84_008914	Protein spaetzle
A0A3R7QAG0	C7M84_008761	T-complex protein 1 subunit eta (Fragment)
A0A3R7QAI3	C7M84_008714	Ribosomal protein S13
A0A3R7QAN5	C7M84_008570	Hydroxyacyl-coenzyme A dehydrogenase, mitochondrial
A0A3R7QAN9	C7M84_020269	Serine proteinase inhibitor B3
A0A3R7QAR9	C7M84_020181	EGF-like domain-containing protein
A0A3R7QAY0	C7M84_008335	Putative glycogen debranching enzyme isoform X1
A0A3R7QAY1	C7M84_020031	Prophenoloxidase activating enzyme III
A0A3R7QAY8	C7M84_008331	AHNK
A0A3R7QB76	C7M84_008097	Polyadenylate-binding protein
A0A3R7QBC8	C7M84_007992	Acetyl-CoA acetyltransferase, cytosolic
A0A3R7QBK5	C7M84_007756	Proteasome subunit alpha type
A0A3R7QBN0	C7M84_019457	Crustacyanin subunit C
A0A3R7QBX6	C7M84_019260	Peptidase S1 and S6 chymotrypsin/Hap
A0A3R7QC40	C7M84_007343	Echinoderm microtubule-associated protein-like 1
A0A3R7QC43	C7M84_019117	Hemocytin
A0A3R7QCC2	C7M84_007135	QM protein
A0A3R7QCH9	C7M84_018829	F-actin-capping protein subunit alpha
A0A3R7QCL2	C7M84_018753	Uricase
A0A3R7QCN8	C7M84_018722	Chitin deacetylase 1
A0A3R7QCP1	C7M84_006921	Paramyosin
A0A3R7QCU3	C7M84_006787	Pacifastin heavy chain
A0A3R7QDC8	C7M84_006325	superoxide dismutase
A0A3R7QDE9	C7M84 006266	Fibroin heavy chain-like
A0A3R7QDG2	C7M84 018032	threoninetRNA ligase
A0A3R7ODK6	C7M84 017909	Vegetative cell wall protein gp1-like
A0A3R7ODI 3	C7M84_006180	Spaetzle domain-containing protein
A0A3R7ODP9	C7M84_006077	Dynamin-type G domain-containing protein
A0A3R70DX1	C7M84 017655	Calcification-associated peptide-2
A0A3R70D75	C7M84 017621	Putative proliferation-associated protein 2G4
	C7M84_005634	40S ribosomal protein S27
	J 1107_00000	

A0A3R7QE51	C7M84_017524	LysinetRNA ligase
A0A3R7QE90	C7M84_005470	Early cuticle protein 3
A0A3R7QEN7	EIF6	Eukaryotic translation initiation factor 6
A0A3R7QEV9	C7M84_016832	Filaggrin
A0A3R7QF28	C7M84_016640	Putative isocitrate dehydrogenase
A0A3R7QF35	C7M84_016595	Peroxinectin
A0A3R7QF51	C7M84 016563	Blimp-1
A0A3R7QFC9	C7M84_004332	Putative cubilin (Fragment)
A0A3R7QFI5	C7M84_004179	Putative neural cell adhesion molecule 1
A0A3R7QFL4	C7M84_004096	Zinc finger EYVE domain-containing protein 26
A0A3R7OFM7	C7M84_004054	Mitochondrial cytochrome c oxidase subunit VIb
	C7M84_015982	Serine hydroxymethyltransferase
	C7M94_015409	Outer dence fiber protein 2
	C7M94_013490	Protoin SOGA2
AUASKIQGDU	C7M04_003200	Pitterin SOGAZ
AUA3R7QGGZ	C71064_003200	DJ-1 protein
AUA3R7QH39	C/M84_014726	Dolichyl-diphosphooligosacchandeprotein glycosyltransierase subunit 2
AUA3R7QH5U	C/M84_014707	DUF4789 domain-containing protein
AUA3R7QHAU	C7M84_014514	Eukaryotic translation initiation factor 3 subunit M
A0A3R7QHC4	C7M84_002403	Catalase
A0A3R7QHG5	C7M84_002270	Mitochondrial 2-oxoglutarate/malate carrier protein
A0A3R7QHI2	C7M84_002203	Chitin-binding type-2 domain-containing protein
A0A3R7QHJ7	C7M84_002158	S-formylglutathione hydrolase
A0A3R7QHU5	C7M84_001883	Dynein light chain
A0A3R7QHV0	C7M84_013937	RNA helicase
A0A3R7QHX6	C7M84_013855	Putative cysteine proteinase (Fragment)
A0A3R7QIP8	C7M84_001105	Fasciclin-2
A0A3R7QIQ8	C7M84_013054	Collagen IV NC1 domain-containing protein
A0A3R7QIU1	C7M84_000998	Putative tenascin-like protein
A0A3R7QIX3	C7M84_000910	MaoC-like domain-containing protein
A0A3R7QJ11	C7M84 012803	Putative cvclin-dependent kinase 10
A0A3R7QJW4	C7M84_000081	beta-N-acetylhexosaminidase
A0A3R7QJX4	C7M84_000061	Single VWC domain protein 1
A0A3R7QKV6	C7M84_024760	Techylectin-5B
A0A3R7QKY1	C7M84_024677	ABC transporter
A0A3R7OL 11	C7M84_010881	.IHE-like carboxylesterase 1
A0A3R7OL20	C7M84_024577	Multifunctional fusion protein (Fragment)
	C7M84_023805	Carboxypentidase
	C7M84_023720	LIM domain-containing protein
A0A3P7OM12	C7M84_023455	proton-translocating NAD(P)(+) transhydrogenase
	$C7M04_020400$	Microtubule accessized protein PD/EP family member 2
	C71004_009033	Dutative eminementidade Nulike
	C71064_009097	Pulative aminopeptidase in-like
	C7IVI84_023051	Basic proline-rich protein-like
AUA3R7QMM9	C/M84_009267	Arthrodial cuticle protein AMP16.3 (Fragment)
A0A3R7QMR5	C7M84_009144	Electron transfer flavoprotein subunit alpha
A0A3R7QMW3	C7M84_009025	Vitellogenin domain-containing protein
A0A3R7QN58	C7M84_008796	INF receptor-associated factor 6
A0A3R7QN99	C7M84_008674	Putative MAM domain-containing protein 2-like
A0A3R7QNE7	C7M84_022165	Putative serine proteinase inhibitor
A0A3R7QNI2	C7M84_008510	Arthrodial cuticle protein AMP8.1
A0A3R7QP41	C7M84_008056	Putative tyrosine/tryptophan monooxygenase (Fragment)
A0A3R7QP42	C7M84_008025	Protein transport protein Sec61 subunit beta
A0A3R7QP72	C7M84_013490	Pupal cuticle protein 27
A0A3R7QPD2	C7M84_009137	T-complex protein 1 subunit theta
A0A3R7QPL5	C7M84_005193	FAS1 domain-containing protein
A0A3R7QPP9	C7M84_007466	Vitellogenin receptor (Fragment)
A0A3R7QRC2	C7M84_006114	60S ribosomal protein L8
A0A3R7QRL1	C7M84 005823	Lactamase_B domain-containing protein
A0A3R7QRM9	C7M84 005747	Putative GTP-binding protein SAR1B
A0A3R7QRP4	C7M84 005723	Muscle LIM protein Mip84B
A0A3R7ORR3	C7M84_005639	Heme-binding protein 2
A0A3R7OR\/2	C7M84_005493	Mannose-binding protein
		manifed binding proton

A0A3R7QSN8	C7M84_004636	Cytochrome c-1
A0A3R7QSV0	C7M84_004489	Lysosomal Pro-X carboxypeptidase
A0A3R7QSZ8	C7M84_004362	Estrogen sulfotransferase
A0A3R7QTG8	C7M84_003730	Crustacean calcium-binding protein 23
A0A3R7QTK5	C7M84 003491	G protein beta 1 subunit
A0A3R7QTN8	C7M84 003325	Calcineurin subunit B
A0A3R7QTV0	C7M84_003131	Intracellular fatty acid binding protein
A0A3R7QUA1	C7M84_002688	Choline-specific alvcerophosphodiester phosphodiesterase
A0A3R7QVA7	C7M84_001747	Glutathione S-transferase
A0A3R7QVL5	C7M84_001364	UMP-CMP kinase
A0A3R7QVW0	C7M84_001091	ATP synthase subunit O mitochondrial
A0A3R70WD1	C7M84_000602	WAP domain-containing protein
A0A3R70WR3	C7M84_000243	folate gamma-glutamyl hydrolase
A0A3R7OXB9	C7M84_025145	Laccase 1
A0A3R70754	C7M84_022527	Melanotransferrin
A0A3R707R3	C7M84_021358	Alnha-mannosidase
	C7M84_020028	Protein disulfide isomerase 1
A0A3R7R002	C7M84_015963	Pronhenoloxidase activating enzyme
A0A3P7P007	C7M84 015172	Cleavage stimulation factor 50 kDa subunit (Fragment)
A0A3P7P042	C7M84_012200	N(A)-(Beta-N-acetylalucosaminyl)-L-asparaginase
A0A3R7R042	C7M94_012200	N(4)-(Deta-N-acetylgiucosaniny)-L-asparaginase
	$C7N04_007743$	
	C71004_004437	Elloyi-COA liyuldiase
	$C71004_003753$	Putative retiniou-inducible serine carboxypeptidase-like
	C71004_020721	ADS ribosomal protain S19
AUA3R7SHIMT		405 ribosomai protein 518
AUA3R75193	C7M84_019883	Putative aldenyde denydrogenase family 8 member A1-like
AUA3R7SIC8	C7M84_019798	Putative surface protein bspA-like (Fragment)
AUA3R7SIJ9	C7M84_019638	Adnesive plaque matrix protein
AUA3R7SIP5	C7M84_019479	
A0A3R7SIW3	C7M84_019181	Putative serine proteinase inhibitor (Fragment)
AUA3R7SJE1	C7M84_018633	I Gc domain-containing protein
AUA3R7SJJ3	C7M84_018444	SH2 domain-containing protein
AUA3R/SJX/	C7M84_017918	M15 protein
A0A3R7SK50	C7M84_017666	Calcification-associated peptide-2
A0A3R7SKF0	C7M84_017393	I ranslationally-controlled tumor protein homolog
A0A3R7SKG8	C7M84_017349	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10, mitochondrial
A0A3R7SKK1	C7M84_017290	Proteasome subunit beta
A0A3R7SL05	C7M84_016733	SAPK substrate protein
A0A3R7SM43	C7M84_015333	Pre-mRNA-processing factor 19
A0A3R7SMA9	C7M84_015008	Putative epidermal cell surface receptor isoform X4
A0A3R7SN35	C7M84_013888	ATP synthase subunit beta
A0A3R7SN98	C7M84_013646	Pyruvate carboxylase
A0A3R7SND6	C7M84_013518	Crustin-like protein
A0A3R7SNJ4	C7M84_013334	Putative L-xylulose reductase
A0A3R7SPH9	C7M84_012223	C-type lectin 1
A0A3R7SPI4	C7M84_012182	Sarcoplasmic calcium-binding protein
A0A3R7SQE6	C7M84_011007	Cuticle protein 7
A0A3R7SQF5	C7M84_011003	Putative imidazolonepropionase isoform X2
A0A3R7SR07	C7M84_010375	Cathepsin D
A0A3R7SRB5	C7M84_009996	Ubiquitin-conjugating enzyme
A0A3R7SRF7	C7M84_009852	beta-N-acetylhexosaminidase
A0A3R7SRX9	C7M84_009263	Cuticle protein AMP4
A0A3R7SS41	C7M84_009057	Nicotinic acetylcholine receptor subunit alpha 12
A0A3R7SS49	C7M84_009022	Alpha-actinin, sarcomeric
A0A3R7SSF0	C7M84_008615	40S ribosomal protein S21
A0A3R7SSF9	C7M84_008603	Heterogeneous nuclear ribonucleoprotein Q
A0A3R7SSU7	C7M84_008052	Putative E3 ubiquitin ligase
A0A3R7ST37	C7M84_007701	phosphoglucomutase (alpha-D-glucose-1,6-bisphosphate-dependent)
A0A3R7STD3	C7M84_007323	c-Myc-binding protein
A0A3R7STI2	C7M84_007114	SMB domain-containing protein
A0A3R7STU0	C7M84_006669	Mitochondrial-processing peptidase subunit beta

A0A3R7STU9	C7M84_006642	Thrombospondin
A0A3R7SUP0	C7M84_005496	Pyruvate dehydrogenase E1 component subunit alpha
A0A3R7SUV3	C7M84_005268	Putative basement membrane-specific heparan sulfate proteoglycan core protein isoform X11
A0A3R7SV19	C7M84_004928	Putative CDGSH iron-sulfur domain-containing protein 3, mitochondrial isoform X1
A0A3R7SVI1	C7M84_004254	Beta-hexosaminidase
A0A3R7SWG8	C7M84_002684	Clathrin light chain
A0A3R7SXN5	C7M84 001049	Homologous-pairing protein 2 homolog
A0A3R7SXR8	C7M84_000948	Putative chitinase 10 isoform X1
A0A3R7SY44	C7M84_000500	SuccinateCoA ligase [ADP-forming] subunit beta, mitochondrial
A0A3R7SYF2	C7M84_025596	C2H2-type domain-containing protein
A0A3R7SYF7	C7M84_025548	T-complex protein 1 subunit alpha
A0A3R7SYN4	C7M84_024973	Carboxypeptidase B
A0A3R7SYW9	C7M84_024465	Failed axon connections
A0A3R7S7H4	C7M84_023806	Ribos 14 asso C domain-containing protein
A0A3R7SZS6	C7M84_023456	Isocitrate dehydrogenase [NADP]
A0A3R7T009	C7M84_023241	Neurofilament heavy polypentide
A0A3R7T0H7	C7M84_022673	KH domain-containing protein
A0A3R7T0I1	C7M84_022653	60.S acidic ribosomal protein P0
A0A3R7T012	C7M84_022613	MAM domain-containing alvcosylphosphatidylinosital anchor protein 1
Δ0Δ3R7T1115	C7M84_003220	RNA recognition motif (RRM)
Δ0Δ/23S8R7	C7M84_003220	Beta-alucuronidase
A0A42300007	C7M84_021838	Ovveterol-binding protein
A0A4235307 A0A4235033	C7M84_021830	Tubulin alpha chain (Fragment)
A0A4235955	C7M84_021500	Ribosomal protain S10
A0A42339111	$C7M94_021300$	Calactoso mutarotaso
AUA42339K7	$C7N04_021379$	Nidegen 2
AUA42339W3	C71004_021317	Nuoyen-2 Butativa transkatalese lika protain 2 isoform X1
AUA4233A92	C71004_021131	Putative inadeptionate and demain containing protain 2, mitachandrial like
AUA4233AD7	C71004_021120	Pilacomal protoin S24
AUA4233D40	$C71004_020799$	Clethrin house choin
AUA4235D7 1	C71004_020770	
AUA4235000	C71004_020740	Dumpy
AUA4235D92	C71004_020731	Dumpy
AUA4235B94	C/IM84_020732	EGF-like domain-containing protein
AUA4235BA6	C7M84_020741	Neurogenic locus Notch protein
AUA4235BQ1	C71084_020557	PPE domain-containing protein
AUA4235050	C71064_020554	Secreteu protein
AUA423SC39	C7M84_020442	Choline-specific glycerophosphodiester phosphodiesterase
AUA423SCI3	C7M84_020310	Hrpos protein
AUA4235CJ5	C7IM84_020299	NADH denydrogenase [ubiquinone] i beta subcomplex subunit 9
A0A423SCV9	C7M84_020175	3-oxoacyi-jacyi-carrier-proteinj reductase
AUA423SCY3	C7M84_020149	Phosphoglycerate kinase
AUA423SD31	C7M84_020051	MFS domain-containing protein
AUA4235D78	C7M84_020038	
A0A423SDB5	C7M84_020000	Ig-like domain-containing protein
A0A423SDD3	C7M84_019937	Chloride Intracellular channel
A0A423SDH1	C7M84_019934	Myosin heavy chain type 1
A0A423SE99	C7M84_019592	Chitinase 4
A0A423SEB7	C7M84_019614	FreD
A0A423SEE9	C7M84_019583	Beta-centractin
A0A423SEM4	C7M84_019482	Crustacyanin subunit A
A0A423SEN6	C7M84_019464	Crustacyanin subunit C
A0A423SEP0	C7M84_019459	Crustacyanin subunit C
A0A423SEP1	C7M84_019460	Crustacyanin subunit A
A0A423SEP5	C7M84_019475	Crustacyanin subunit A
A0A423SER3	C7M84_019481	Crustacyanin subunit C
A0A423SES2	C7M84_019462	Crustacyanin subunit A
A0A423SEZ3	C7M84_019349	GPI-anchored protein pfl2 (Fragment)
A0A423SF76	C7M84_019258	GTP binding protein alpha subunit Go
A0A423SF93	C7M84_019285	TEP isoform 2 (Fragment)
A0A423SFA9	C7M84_019284	TEP isoform 2
A0A423SFL3	C7M84_019115	Putative 40S ribosomal protein S3-like isoform X1

A0A423SFQ4	C7M84_019072	Lectin, mannose-binding, 1
A0A423SFZ3	C7M84_018979	Type II hemocyte transglutaminase
A0A423SG07	C7M84_018922	ATP synthase subunit d, mitochondrial
A0A423SG23	C7M84_018983	Hemocyte transglutaminase
A0A423SG35	C7M84_019013	Histone H2A
A0A423SGM7	C7M84_018792	Retinal dehydrogenase 1
A0A423SGQ3	C7M84_018693	superoxide dismutase
A0A423SGQ4	C7M84 018759	Sorbitol dehydrogenase
A0A423SGR6	C7M84_018736	Hemocyanin subunit L2
A0A423SGR7	C7M84_018764	Peroxiredoxin 6
A0A423SGT1	C7M84 018735	Hemocyanin subunit L3
A0A423SGT5	C7M84_018640	Succinate dehvdrogenase [ubiquinone] iron-sulfur subunit, mitochondrial
A0A423SGU8	C7M84 018733	Hemocyanin subunit L2
A0A423SGV5	C7M84 018689	Putative glutaryl-CoA dehydrogenase
A0A423SGW3	C7M84 018710	Putative NADH dehvdrogenase
A0A423SGZ6	C7M84_018673	Xaa-Pro aminopeptidase 1
A0A423SH09	C7M84_018690	Putative glutaryl-CoA dehydrogenase-like
A0A423SHB5	C7M84_018530	T-complex protein 1 subunit beta
A0A423SHU2	C7M84_018340	palmitovl-protein hydrolase
A0A423SHW4	C7M84_018351	dutaminyl-peptide cyclotransferase
A0A423SHX3	C7M84_018350	Adenosylhomocysteinase
A0A423SI55	C7M84_018195	Alpha 2 macroglobulin
A0A423SIC8	C7M84_018174	Glycine N-methyltransferase
A0A423SID4	C7M84_018077	Tubulin beta chain
A0A423SIX1	C7M84_017843	Heat shock protein cognate 5
A0A423S 104	C7M84_017919	M15 protein
Δ0Δ423S IE6	C7M84_017722	
A0A423S IK1	C7M84_017705	Chorion peroxidase
A0A423S IP6	C7M84_017570	Serine hydroxymethyltransferase
A0A423S IO0	C7M84_017658	Calcification-associated pentide-2
A0A42303Q3	C7M84_017663	Calcification-associated peptide-2
A0A423051(1	C7M84_017005	Dibudrolipovi debudrogenase
A0A4235KL5	C7M84_017415	60S ribosomal protoin L14
AUA4233KL3	C71004_017290	Beta beta peretana 15 15' meneovurgenaga
A0A4233KW/	C7M84_017330	Elongation factor 2
A0A4233K34	$C7N04_017234$	Alpha galactosidasa
A0A4233KV4		Vogualar ATD overthage aubunit P.K. form
A0A4233KV0	C7M84_017243	Putative historia H1 0 R like
AUA4233KZ9	C71004_017239	Carbowilic actor hydrolaco
AUA4233L3U	C71004_017102	
AUA4233L32	C71004_017174	Talia 1
AUA4235L0U	C71064_017126	Idilli-I Dutativa muasia regulateru light shaia 2 amaath muasla
AUA4235LLU	C71064_016912	Pulative myosin regulatory light chain 2 smooth muscle
AUA4233LUT	C71004_010937	Dieuniyun nyululase
AUA4235LVV0	C71064_016600	Pulative malate denydrogenase, cytoplasmic isotom X2
AUA4233LZ0	C71004_010000	Pulative eukalyotic translation initiation factor 2 suburnt 5
AUA4235IVI29	C71064_016797	Monness hinding protein
AUA4235M49	C7IVI84_016776	Mannose-binding protein
AUA4235MA1	C7M84_016794	BRCT domain-containing protein
AUA4235MDU	C7IVI84_016621	RNA-directed DNA polymerase
AUA4235MD3	C7IM84_016614	Neurexin-4
AUA4235MD6	C7M84_016686	Putative serine/arginine repetitive matrix protein 2
AUA4235MH1	C7M84_016635	Serine protease innibitor
AUA4235MN4		Randrz-type domain-containing protein
AUA423SMPU		KINA NEIICASE
AUA423SMQ8		Serine/threenine-protein kinase IOR
AUA423SMS3		ludulin deta chain
AUA423SMV5	C/M84_016475	
AUA423SN04	C/M84_016394	Putative papilin-like isotorm X6
AUA423SN06	C/M84_016420	Glucose-6-phosphate isomerase
AUA423SN10	C/M84_016480	Putative neterogeneous nuclear ribonucleoprotein H2 isoform X2
A0A423SN99	C7M84 016398	Lacunin

A0A423SNE0	C7M84_016367	NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial		
A0A423SNE1	C7M84_016268	Hemolymph clottable protein		
A0A423SNI6	C7M84_016261	T-complex protein 1 subunit delta		
A0A423SNM5	C7M84_016193	Alanineglyoxylate aminotransferase 2, mitochondrial		
A0A423SNP0	C7M84_016267	Hemolymph clottable protein		
A0A423SNS5	C7M84_016142	Putative Ca2+ sensor		
A0A423SP21	C7M84_016044	Metalloendopeptidase		
A0A423SP76	C7M84_016014	Gastrolith protein 10		
A0A423SP91	C7M84_016023	C-type lectin domain-containing protein		
A0A423SQ15	C7M84_015713	Strawberry notch homolog 1		
A0A423SQ51	C7M84_015661	Вір		
A0A423SR77	C7M84_015249	RNA-editing deaminase 1		
A0A423SRA7	C7M84_015213	Extensin-like		
A0A423SRW7	C7M84_015050	C-type lectin domain-containing protein		
A0A423SS11	C7M84_014981	Endoplasmic reticulum-Golgi intermediate compartment protein 1		
A0A423SS33	C7M84_014945	ATP synthase-coupling factor 6, mitochondrial		
A0A423SSC0	C7M84_014848	Putative aldehyde dehydrogenase family 8 member A1 isoformX1		
A0A423SSF7	C7M84_014822	Extensin		
A0A423SSL4	C7M84_014790	malevlacetoacetate isomerase		
A0A423SSL9	C7M84 014730	Putative hypoxia up-regulated protein 1 isoform X2		
A0A423SSM5	C7M84 014729	Hypoxia up-regulated protein 1		
A0A423SSQ2	C7M84_014701	PBPe domain-containing protein		
A0A423SSR6	C7M84_014680	Protein SET		
A0A423SST2	C7M84_014696	Delta-aminolevulinic acid dehvdratase		
A0A423STL8	C7M84 014362	26S proteasome non-ATPase regulatory subunit 6		
A0A423STM9	C7M84_014357	Dihvdrolipovllvsine-residue acetvltransferase component	of	pyruvate
		dehydrogenase complex, mitochondrial (Fragment)	•	
A0A423STZ3	C7M84_014271	Chitinase		
A0A423SU62	C7M84_014137	Putative tropinone reductase 2-like (Fragment)		
A0A423SUD5	C7M84_014156	MICOS complex subunit MIC60		
A0A423SUJ8	C7M84_014003	2,4-dienoyl-CoA reductase, mitochondrial		
A0A423SUM6	C7M84_014007	NADH dehydrogenase		
A0A423SUM8	C7M84_013953	Fibronectin type-III domain-containing protein		
A0A423SUS6	C7M84_013964	Tubulin alpha chain		
A0A423SUV4	C7M84_013889	Polysialoglycoprotein		
A0A423SV48	C7M84_013801	Putative obg-like ATPase 1 isoform X5		
A0A423SVT7	C7M84_013521	Putative elastin a		
A0A423SW39	C7M84_013419	Acylamino-acid-releasing enzyme		
A0A423SWD4	C7M84_013372	Agrin		
A0A423SWH3	C7M84_013239	Na+/K+-ATPase alpha subunit		
A0A423SWM5	C7M84_013168	Cuticle protein 6		
A0A423SWU6	C7M84_013161	Chitin-binding type-2 domain-containing protein		
A0A423SWU7	C7M84_013271	Ankyrin repeat-containing protein		
A0A423SX22	C7M84_013113	40S ribosomal protein S17		
A0A423SX24	C7M84_013033	4-hydroxyphenylpyruvate dioxygenase		
A0A423SX47	C7M84_013087	Vegetative cell wall protein gp1-like		
A0A423SX67	C7M84_013011	C-type lectin domain-containing protein		
A0A423SXG7	C7M84_012949	Trypsinogen 1		
A0A423SXS4	C7M84_012802	Putative urocanate hydratase		
A0A423SXZ4	C7M84_012764	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8		
A0A423SY07	C7M84_012695	40S ribosomal protein S25		
A0A423SY25	C7M84_012813	Histone H2A		
A0A423SY44	C7M84_012756	Mannose-binding protein		
AUA423SYM7	C7M84_012693	Citrate synthase		
A0A423SYQ1	C7M84_012389	Prefoldin subunit 3		
A0A423SZ32	C7M84_012313	Litin (Fragment)		
A0A423SZG5	C7M84_012150	V-type proton ATPase subunit		
AUA423SZH0	C7M84_012148	Pacitastin light chain (Fragment)		
AUA423SZI5	C7M84_012117	Peritrophin (P		
AUA423SZM6	C7M84_012113	Peritrophin		
AUA423SZR6	C7M84_012147	Integrin		

A0A423T016	C7M84_011963	Putative laminin A chain
A0A423T0H6	C7M84_012003	Flotillin-1
A0A423T0M6	C7M84_011721	AN1-type zinc finger protein 1
A0A423T0R6	C7M84_011709	Putative serine protease 44
A0A423T187	C7M84 011512	Putative histone-binding protein Caf1 isoform X4
A0A423T189	C7M84 011497	PH domain-containing protein
A0A423T196	C7M84_011484	DUF4585 domain-containing protein
A0A423T1K3	C7M84_011281	Aldedh domain-containing protein
A0A423T1P4	C7M84_011232	Fibronectin type-III domain-containing protein
A0A423T1V1	C7M84_011250	Beta-1.3-glucan binding protein
A0A423T1W0	C7M84_011253	Beta-1.3-glucan binding protein
A0A423T231	C7M84_011251	Beta-1 3-glucan-binding protein
A0A423T291	C7M84_011183	Ligand of Numb protein X 2
A0A423T2H2	C7M84_010970	alanine transaminase
A0A423T2P8	C7M84_010919	Beta-actin
A0A423T3D3	C7M84_010808	C-type lectin
A0A423T3K1	C7M84_010894	Adenosylhomocysteinase
A0A423T3P0	C7M84_010623	Actin-related protein 2
A0A423T3O5	C7M84_010552	Teneurin N-terminal domain-containing protein
Δ0Δ423T3T2	C7M84_010782	Chemosensory protein
Δ0Δ423T377	C7M84_010614	Putative ufm1-specific protease 1-like
A0A423T327	C7M84_010513	PNA belicase
Δ0Δ423T425	C7M84_010387	Glycine cleavage system H protein, mitochondrial
Δ0Δ423T425	C7M84_010388	Putative sulfate transporter
A0A4231463 A0A423T4K3	C7M84_010380	
A0A42314R3	$C7N94_010301$	S phase kinase associated protein 1
A0A42314A7 A0A423T572	C7M94_010146	NADH dobudrogonaso
A0A4231573	C7M84_010130	TEIIS-type domain-containing protein
A0A42313A4 A0A423T5D0	C7M84_0009502	WAP domain-containing protein
A0A42315D9	$C7N94_009902$	Secreted protein (Fragment)
A0A42315J5 A0A423T5D6	C71004_009603	Phosphoacetylalycoccamina mytaca
A0A42315F0	C7M84_009810	Malia anzuma
A0A42313V2	$C7N94_009701$	hate N acetulhevecominidade
AUA42315V0	C71004_009092	Dela-N-acelymexosammidase Malata dabydrogopaca
A0A4231311	C71004_009700	Reveine rich cell wall structural protein
A0A4231009	$C7N84_009529$	ATP synthese subunit f mitochandrial
A0A42310N0	C7M84 000520	Chucino rich coll wall structural protoin
A0A42310N9	$C7N84_009550$	40S ribocomal protoin S11
A0A42310V0	C7M84_009445	
A0A4231019	C71004_009420	Chitin hinding type 2 domain containing protain
AUA4231733	$C71004_009353$	Strongly obitin hinding protein 1
AUA4231703	C71064_009332	Strongly childh-binding protein-1
AUA4231771	C71064_009330	Cuticle protein 6
AUA42317C0	C71004_009202	Arthradial autiala pratain AMD9.1
AUA42317DU	C71004_009200	Annoular culter protein AMFO. I
AUA42317K3	C71004_009179	
AUA42317L7	C71064_009195	Lipopioleini receptor ZA
AUA42317P8	C71084_009155	Putative CD81 protein
AUA4231753	C71084_009096	Dipeptidyi peptidase 1
AUA42317X1	C71084_009043	Formimidoyitransierase-cyclodeaminase
AUA4231854	C71084_008943	Hemocyanin subunit L2 (Fragment)
A0A42318D0	C7M84_008875	LRRUT domain-containing protein
AUA42318V5	C7M84_008697	Putative nuclear speckle splicing regulatory protein 1-like
AUA4231820		
AUA4231934	C/M84_008626	ATP Synthase Subunit b
AUA4231944	C/M84_008621	Putative 4-coumarateCoA ligase 1
AUA4231968	C/M84_008599	
AUA4231911	C/M84_008469	Protein phosphatase 1B
AUA4231914	C/M84_008446	Nucleoplasmin isotorm 1-like protein
AUA42319M8	C/M84_008387	Animai nem peroxidase
AUA42319R6	C/M84_008333	Neuroplast differentiation-associated protein AHNAK
A0A423T9T3	C7M84_008384	Putative basement membrane-specific heparan sulfate proteoglycan core protein isoform X13

A0A423T9X4	C7M84_008334	Neuroblast differentiation-associated protein AHNAK
A0A423TA80	C7M84_008182	Putative ras-like protein 2 isoform X1
A0A423TAD8	C7M84_008091	Staphylococcal nuclease domain-containing protein 1
A0A423TAW0	C7M84_007955	Metalloendopeptidase
A0A423TAW6	C7M84_007931	Putative alpha/beta hydrolase domain-containing protein 14B-like
A0A423TB01	C7M84_007985	Uncharacterized protein
A0A423TB17	C7M84 007888	Dehydrogenase/reductase SDR family member 4
A0A423TB59	C7M84_007914	Putative methyltransferase-like protein 7A
A0A423TB87	C7M84_007801	Nucleoside diphosphate kinase
A0A423TBB3	C7M84_007781	Eukarvotic translation initiation factor 3 subunit I
A0A423TBE4	C7M84_007719	GATA zinc finger domain-containing protein 14-like
A0A423TBK5	C7M84_007762	Serine proteinase 1
A0A423TBN1	C7M84_007646	Laminin subunit beta-1
404423TBN5	C7M84_007641	Putative neurofilament heavy polypentide
Δ0Δ/23TBP0	C7M84_007616	LIBC core domain-containing protein
Δ0Δ423TBI 11	C7M84_007633	ANK REP REGION domain-containing protein (Fragment)
Δ0Δ423TC23	C7M84_007516	Kazal-like domain-containing protein (Fragment)
A0A423TC32	C7M84_007498	Putative cuticle protein
A0A422TC50	C7M94 007430	Activation factor subunit spp27
A0A4231050	C7M04_007440	Probable methylmologiste comisidabyda dabydrogonogo [ogylating], mitochondrial
A0A4231C34	C71004_007473	Choine rich euperfemily member
A0A4231C00	C71004_007533	Anti linenel vegenerating factor
AUA4231079		Anti-lipopolysacchande lactor
AUA4231C99	C7IVI64_007405	Chaine rich cell well structured protein (Fragment)
AUA4231CA4	C7IVI84_007500	Givene-rich cell wall structural protein 1
AUA423TCL3	C7IVI84_007321	Larvai cuticie protein LCP-17
A0A4231D62	C7M84_007052	Condensation domain-containing protein
A0A4231DI9	C7M84_006994	
AUA4231DL6	C7M84_007014	40S ribosomal protein SA
A0A4231DM1	C7M84_006904	Putative heterochromatin protein 1-binding protein 3 isoform X8
A0A4231DM7	C7M84_007005	Uncharacterized protein
A0A4231DQ2	C7M84_006888	Crustacyanin-C1 subunit
A0A4231E04	C7M84_006786	Pacifastin heavy chain
A0A423TE44	C7M84_006818	Fibril-forming collagen alpha chain-like
A0A423TE85	C7M84_006666	Uncharacterized protein
A0A423TE88	C7M84_006716	VWFD domain-containing protein
A0A423TEB0	C7M84_006671	Peroxiredoxin-5
A0A423TEF3	C7M84_006650	Cuticular protein 34
A0A423TEI8	C7M84_006590	Lipoprotein
A0A423TES1	C7M84_006548	Prostaglandin reductase 1
A0A423TET4	C7M84_006537	Putative fatty aldehyde dehydrogenase-like
A0A423TEU8	C7M84_006461	Enoyl-CoA delta isomerase 2
A0A423TEZ4	C7M84_006448	cystathionine gamma-lyase
A0A423TF87	C7M84_006352	Serine protease
A0A423TFA4	C7M84_006298	Cuticle protein
A0A423TFC8	C7M84_006274	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2
A0A423TFE2	C7M84_006263	Vegetative cell wall protein gp1-like
A0A423TFQ5	C7M84_006261	Integrin_alpha2 domain-containing protein
A0A423TFU3	C7M84_006107	Putative ficolin-1
A0A423TGI1	C7M84_005885	Inter-alpha-trypsin inhibitor heavy chain H3
A0A423TH67	C7M84_005596	Putative phosphoribosylformylglycinamidine synthase
A0A423TH92	C7M84_005612	superoxide dismutase
A0A423THI6	C7M84_005505	60S ribosomal protein L17
A0A423THJ4	C7M84_005519	lactoylglutathione lyase
A0A423THL6	C7M84_005514	Serine proteinase inhibitor 7
A0A423THN1	C7M84_005443	Glyoxylate reductase/hydroxypyruvate reductase
A0A423THS0	C7M84_005492	Mannose-binding protein
A0A423TI28	C7M84_005287	Heat shock protein 83
A0A423TI33	C7M84_005296	Putative bifunctional purine biosynthesis protein PURH
A0A423TI42	C7M84_005303	Basic proline-rich protein
A0A423TIF1	C7M84_005182	Mesencephalic astrocyte-derived neurotrophic factor homolog
A0A423TIG4	C7M84_005134	Androgenic gland-specific protein

A0A423TII9	C7M84_005157	Putative nucleolar transcription factor 1
A0A423TIK6	C7M84_005126	Cadherin domain-containing protein (Fragment)
A0A423TIL1	C7M84_005129	ATP synthase subunit alpha
A0A423TIS3	C7M84_005062	Heat shock protein
A0A423TJ07	C7M84_004964	C-type lectin protein
A0A423TJ95	C7M84_004883	Protein disulfide-isomerase
A0A423TJN8	C7M84_004755	P-type Cu(+) transporter
A0A423TJU0	C7M84 004686	Fumarylacetoacetase
A0A423TKA1	C7M84_004512	VAMP-associated protein
A0A423TKA2	C7M84_004517	Phosphotransferase
A0A423TKF3	C7M84_004458	Lissencephalv-1 homolog
A0A423TKH1	C7M84_004492	Cuticular protein CPR76a
A0A423TKK4	C7M84_004392	Chitin-binding type-2 domain-containing protein
A0A423TKW4	C7M84_004251	Aminopeptidase
A0A423TKX6	C7M84_004266	Myotrophin
A0A423TKZ6	C7M84_004286	Leucine-rich repeat domain-containing protein
A0A423TI 37	C7M84_004182	Aldo ket red domain-containing protein
A0A423TL 51	C7M84_004204	Voltage-dependent anion-selective channel protein 3
A0A423TL B5	C7M84_004130	Succinate-semialdehyde dehydrogenase
Δ0Δ423TI X9	C7M84_003874	60S ribosomal protein L 23
ΔΟΔ423ΤΙ V4	C7M84_003018	Transgelin
A0A423TM80	C7M84_003807	PKD channel domain-containing protein
A0A423TM00	C7M84_003776	Cuticle protein 6
A0A423TMA2	C7M84_003400	Clutamine synthetase
A0A4231101001	C7M94_003499	Kazal typo proteinase inhibitor
A0A4231N10	C7N04_003461	Razai-type proteinase initiation
AUA4231N23	C71004_003431	Pilocomol protoin 15
AUA4231N92	C71064_003377	Ribosomai protein L 15
	C71064_003291	Succinate demydrogenase [ubiquinone] navoprotein subunit, mitochondnar
	C71VI84_003252	Disintegrin domain-containing protein
AUA4231NY3	C71VI84_003152	Figh mobility group nucleosome-binding domain-containing protein 3
AUA4231NZ1	C710184_003079	Pitersuelages E/C
AUA4231P24	C7M84_003094	Ribonuciease E/G
A0A4231P90	C7M84_003065	Putative cuticle protein
AUA423TPE8	C7M84_002967	INFR-Cys domain-containing protein
AUA4231PM4	C7M84_002894	Peroxiredoxin
A0A423TPP0	C7M84_002897	vesicle-tusing AT Pase
A0A4231PQ2	C7M84_002841	6-phosphogluconate dehydrogenase, decarboxylating
A0A4231P18	C7M84_002802	Aldedh domain-containing protein
A0A4231PU2	C7M84_002843	Heat shock protein 67B2
A0A423TPV2	C7M84_002812	T-complex protein 1 subunit zeta
A0A423TPV3	C7M84_002803	Putative aldehyde dehydrogenase 5, mitochondrial-like
A0A423TQ14	C7M84_002779	Putative articulin p60
A0A423TQC0	C7M84_002668	Laminin subunit alpha
A0A423TQH5	C7M84_002575	Receptor-type tyrosine-protein phosphatase F
A0A423TQN2	C7M84_002517	Putative kinesin-like protein KIF21A isoform X2
A0A423TQV1	C7M84_002438	Pyridoxal-dependent decarboxylase domain-containing protein 1
A0A423TR82	C7M84_002351	glutathione transferase
A0A423TR93	C7M84_002318	Glucosamine-6-phosphate isomerase
A0A423TRD3	C7M84_002271	Sushi domain-containing protein
A0A423TRF2	C7M84_002255	Putative structural constituent of cuticle
A0A423TRG0	C7M84_002254	Cuticle protein
A0A423TRH8	C7M84_002215	Vegetative cell wall protein gp1-like
A0A423TRI4	C7M84_002217	Sulfide:quinone oxidoreductase, mitochondrial
A0A423TRM5	C7M84_002169	Low-density lipoprotein receptor-related protein 2
A0A423TRM8	C7M84_002176	Cuticular protein 34
A0A423TRP9	C7M84_002175	Cuticular protein 34
A0A423TS60	C7M84_002009	Gastrolith protein 10
A0A423TSE4	C7M84_001927	Kinesin-like protein
A0A423TSI9	C7M84_001874	MHD domain-containing protein
A0A423TSJ7	C7M84_001869	Angiopoietin-related protein 1
A0A423TSK5	C7M84_001844	CLIP domain-containing serine protease

A0A423TSV6	C7M84_001734	Cuticle protein CB5
A0A423TSX5	C7M84_001720	U3 small nucleolar RNA-associated protein 15 homolog
A0A423TSY3	C7M84_001688	Sex-lethal
A0A423TTE3	C7M84_001546	40S ribosomal protein S2
A0A423TTK1	C7M84_001515	DM5 domain-containing protein
A0A423TTQ8	C7M84_001425	Putative microtubule-actin cross-linking factor 1 isoform X7
A0A423TTR8	C7M84_001424	Spectrin repeat-containing domain protein
A0A423TTZ4	C7M84 001390	Coatomer subunit epsilon
A0A423TUC1	C7M84_001255	ATP synthase subunit gamma
A0A423TUJ3	C7M84_001184	40S ribosomal protein S13
A0A423TUW0	C7M84_001038	Putative host cell factor 1-like
A0A423TV72	C7M84_000925	Protein arginine N-methyltransferase 8
A0A423TVC2	C7M84_000893	Putative chorion peroxidase-like
A0A423TVC8	C7M84_000855	Putative conine-8 isoform X2
A0A423T\/D6	C7M84_000861	Putative ankyrin repeat domain-containing protein 1
A0A423TVL8	C7M84_000730	ZnF_CDGSH domain-containing protein
Δ0Δ423T\/Y7	C7M84_000625	Protein hu-li tai shao
A0A423TW/55	C7M84_000605	Kynurenineoxodutarate transaminase 3
Δ0Δ/23T\//Δ1	C7M84_000506	Cuticular protein
A0A423TWA1	$C7M84_000507$	Punal cuticle protein C1B
	$C7M94_000307$	10S ribosomal protoin S12
A0A4231WD2	$C7M94_000407$	400 hibosofilal proteining protoin
AUA4231W33	$C7N04_000350$	S10e ribesemel protein
AUA4231W12	C71064_000356	14.2.2 like protein
AUA4231VVVU	C71064_000301	TAD DNA hinding protoin 42
AUA4231X11	C7M84_000297	TAR DNA-binding protein 43
AUA4231X84	C7M84_000193	ES1-like protein, mitochondrial
AUA4231XE1	C7M84_000127	Hypoxantnine prosphoribosyltransferase
A0A4231X19	C7M84_025569	Putative serine/threonine-protein phosphatase 6 regulatory ankyrin repeat subunit A-like
A0A4231XVV1	C7M84_025574	
A0A4231XX2	C7M84_000007	Pyrazinamidase/nicotinamidase
A0A4231Y67	C7M84_025430	KH domain-containing protein (Fragment)
A0A4231Y88	C7M84_025422	Medium-chain specific acyl-CoA dehydrogenase, mitochondrial
A0A423TYF6	C7M84_025336	3-hydroxyanthranilate 3,4-dioxygenase
A0A423TYK1	C7M84_025304	Serine protease-like protein 3
A0A423TYK3	C7M84_025303	Serine protease nudel
A0A423TYM0	C7M84_025305	Mas
A0A423TZ62	C7M84_025106	Heat shock protein
A0A423TZB9	C7M84_025036	Vimentin
A0A423TZC9	C7M84_025032	Bifunctional purine biosynthesis protein ATIC
A0A423TZJ9	C7M84_024997	60S ribosomal protein L27
A0A423TZT5	C7M84_024879	Putative basement membrane-specific heparan sulfate proteoglycan core protein-like
A0A423U039	C7M84_024785	ATPase ASNA1 homolog
A0A423U069	C7M84_024776	Putative antimicrobial peptide
A0A423U076	C7M84_024703	protein-tyrosine-phosphatase (Fragment)
A0A423U084	C7M84_024723	DNA topoisomerase (Fragment)
A0A423U089	C7M84_024728	Spectrin beta chain
A0A423U0F0	C7M84_024651	Carboxylic ester hydrolase
A0A423U0M4	C7M84_024579	Putative bifunctional 3
A0A423U0P2	C7M84_024565	Olfactory ionotropic receptor IR7
A0A423U0S6	C7M84_024533	RNA-binding protein Rsf1
A0A423U164	C7M84_024403	DUF3060 domain-containing protein
A0A423U1N6	C7M84_024198	SEA domain-containing protein
A0A423U245	C7M84_024053	C type lectin containing domain protein
A0A423U2A1	C7M84_024018	Hydroxysteroid 17-beta dehydrogenase 10
A0A423U2L6	C7M84_023887	Alpha-1,4 glucan phosphorylase
A0A423U2M5	C7M84_023861	VWFA domain-containing protein
A0A423U2Q9	C7M84 023832	S-(hydroxymethyl)glutathione dehvdrogenase
A0A423U2X5	C7M84 023756	DM5 domain-containing protein
A0A423U2Y2	C7M84 023744	Ribosomal S7 domain-containing protein
A0A423U2Y7	C7M84 023750	Protein containing Polysaccharide lyase family 8. central
A0A423U309	C7M84 023789	Eukarvotic translation initiation factor 3 subunit E
		· · · · · · · · · · · · · · · · · · ·

A0A423U364	C7M84_023676	Vinculin
A0A423U369	C7M84_023675	Vinculin
A0A423U3B4	C7M84_023621	C-type lectin-like protein
A0A423U3D0	C7M84_023602	Profilin
A0A423U3F7	C7M84_023577	Na+/K+/2CI-cotransporter isoform 1
A0A423U3L4	C7M84_023513	Chitinase 6
A0A423U3L9	C7M84_023578	Na+/K+/2CI-cotransporter isoform 1
A0A423U3P0	C7M84 023496	Heat shock protein 67B2
A0A423U413	C7M84 023424	Integrin beta
A0A423U424	C7M84 023346	J domain-containing protein
A0A423U4B3	C7M84 023270	SRCR domain-containing protein
A0A423U5E6	C7M84_022903	Nascent polypeptide-associated complex subunit alpha muscle-specific form-like
A0A423U5I3	C7M84_022855	Protein disulfide-isomerase
A0A423U5T5	C7M84_022776	Putative ensconsin-like isoform X8
A0A423U5U7	C7M84_022737	Putative dynactin subunit 2
A0A423U5W/2	C7M84_022728	ATP synthase subunit beta
Δ0Δ/23LI672	C7M8/ 022619	Betal-coat protein
Δ0Δ/23LI6 I3	C7M84_022506	Protein SEC13 homolog
A0A42300000	$C7M94_022300$	Alpha2 macroglobulin isoform 2
A0A42300F0	$C7M04_022437$	Riphaz macrogiobulin isolonni 5
AUA4230031	C7N04_022420	Transmombrane amp24 domain containing protain 0
AUA423U7E3	C71004_022213	Colmodulin
AUA423U7E7	C71VI84_022215	Calmodulin
AUA423U7J2	C71VI84_022108	E l'ubiquitin-activating enzyme
AUA423U7J5	C7M84_022212	Pyruvate kinase
A0A42307P1	C7M84_022100	Putative methenyltetrahydrofolate synthase domain-containing protein isoform X2
A0A423U7P7	C7M84_022078	Putative 60S ribosomal protein L18a-like
A0A423U7W2	C7M84_022086	Putative trifunctional enzyme subunit beta, mitochondrial
A0A423U835	C7M84_021984	Putative GTP cyclohydrolase 1 type 2 NIF3L1
A0A423U854	C7M84_021930	V-type proton ATPase subunit C
A0A423U897	C7M84_021887	Putative filamin-A isoform X3
A0A423U8F6	C7M84_021591	Cytochrome c oxidase subunit 4
A0A423U8J7	C7M84_021559	Origin recognition complex subunit 3
A0A423U8L8	C7M84_021452	Mitochondrial cytochrome c oxidase subunit Vb
A0A423U8M4	C7M84_021457	Tubulin alpha chain
A0A423U8Q2	C7M84_021352	NADH dehydrogenase
A0A423U8V3	C7M84_021315	Beta-thymosin 3
A0A423U8Y8	C7M84_020783	MICOS complex subunit MIC60 (Fragment)
A0A423U904	C7M84_020658	SuccinateCoA ligase [GDP-forming] subunit beta, mitochondrial
A0A423U925	C7M84_020303	VWFD domain-containing protein
A0A423U9I6	C7M84_015650	Cuticular protein RR-2 motif 78
A0A423U9K3	C7M84_015306	Carboxypeptidase A2-like (Fragment)
A0A423U9M1	C7M84_015015	ribonuclease H
A0A423U9P3	C7M84_015419	Mutant C-type lectin
A0A423U9T8	C7M84_013682	Transgelin
A0A423U9U4	C7M84_013491	Pupal cuticle protein 27
A0A423U9V4	C7M84_013492	Pupal cuticle protein 27
A0A423U9V9	C7M84 013493	Pupal cuticle protein 27
A0A423U9Z2	C7M84 012524	Succinyl-CoA:3-ketoacid-coenzyme A transferase
A0A423UA04	C7M84_012482	Putative ribosome-binding protein 1-like isoform X11
A0A423UA78	C7M84_011290	Saposin isoform 1
A0A423UA97	C7M84_009716	Putative very low-density lipoprotein receptor-like
A0A423UAA4	C7M84_009792	NK2-3/5 transcription factor
A0A423UAG5	C7M84_009136	aconitate hydratase
A0A423UAI3	C7M84_008251	NEDD8
A0A423I IAI 3	C7M84_007554	Phosphoinositide phospholipase C
ΔΠΔΔ23ΙΙΔΜΛ	C7M84 007740	Alpha2 macroalobulin isoform 2
ΔΠΔΔ23ΙΙΔΜΑ	C7M84_007/25	60S ribosomal protein L13
	C7M84 007357	Ribosomal protein L 11
A0A423UAF1	C7M84 005291	Translation initiation factor IE-2
AUA423UAWZ	C7M84_003201	rianolation initiation have a complex catalytic cubunit SEC11
A0A4230AZZ	C7M94_004020	Olymai pepuluase complex calalylic suburill SECTI
AUA423UDU3	C/ IVIO4_004300	o-r-tetranyurorolate synthase, cytoplasmic

A0A423UB28	C7M84_003956	26S proteasome non-ATPase regulatory subunit 1
A0A423UBG8	C7M84_015234	Acyl-coenzyme A oxidase
B7SNI3	C7M84_013542	Myosin regulatory light chain 2
D0FH89	C7M84_012084	Peroxiredoxin
E2IH93	C7M84_012927	Fatty-acid binding protein
G5D053	C7M84_014842	Peptidyl-prolyl cis-trans isomerase
H9LFA4	C7M84_009298	Mitochondrial ATP synthase delta subunit
K0E682	TIM	Triosephosphate isomerase
M9WSX9	C7M84_016357	Eukaryotic translation initiation factor 5A
Q283P7	C7M84_024001	Anti-lipopolysaccharide AV-R isoform
Q6GUA8	HSC70	Heat shock cognate 70
Q6ITD0	C7M84_011529	Heterotrimeric GTP-binding protein alpha subunit G-alpha-q
Q9GSP9	C7M84_010918	Beta-actin
X2KWE4	C7M84_023278	Hemocyanin

Table S2 KEGG annotation of the shrimp carapace metabolome

KEGG Level1	KEGG Level2	KEGG Level3 (Pathway)	ID	Count
Metabolism	Global and overview maps	Metabolic pathways	map01100	85
Organismal Systems	Digestive system	Protein digestion and absorption	map04974	18
Environmental Information Processing	Membrane transport	ABC transporters	map02010	18
Metabolism	Global and overview maps	Biosynthesis of amino acids	map01230	15
Human Diseases	Cancers: Overview	Central carbon metabolism in cancer	map05230	14
Genetic Information Processing	Translation	Aminoacyl-tRNA biosynthesis	map00970	12
Metabolism	Lipid metabolism	Glycerophospholipid metabolism	map00564	11
Metabolism	Nucleotide metabolism	Purine metabolism	map00230	11
Metabolism	Global and overview maps	2-Oxocarboxylic acid metabolism	map01210	10
Metabolism	Amino acid metabolism	Arginine and proline metabolism	map00330	10
Organismal Systems	Digestive system	Mineral absorption	map04978	9
Metabolism	Lipid metabolism	Biosynthesis of unsaturated fatty acids	map01040	9
Metabolism	Amino acid metabolism	Tryptophan metabolism	map00380	8
Metabolism	Amino acid metabolism	Phenylalanine metabolism	map00360	7
Metabolism	Amino acid metabolism	Tyrosine metabolism	map00350	7
Metabolism	Carbohydrate metabolism	Glyoxylate and dicarboxylate metabolism	map00630	7
Metabolism	Global and overview maps	Carbon metabolism	map01200	7
Metabolism	Amino acid metabolism	Glycine, serine and threonine metabolism	map00260	6
Metabolism	Lipid metabolism	Arachidonic acid metabolism	map00590	5
Metabolism	Lipid metabolism	Sphingolipid metabolism	map00600	5
Environmental Information Processing	Signaling molecules and interaction	Neuroactive ligand-receptor interaction	map04080	5
Metabolism	Nucleotide metabolism	Pyrimidine metabolism	map00240	5
Metabolism	Carbohydrate metabolism	Butanoate metabolism	map00650	5
Metabolism	Lipid metabolism	Fatty acid biosynthesis	map00061	5
Organismal Systems	Sensory system	Taste transduction	map04742	5
Metabolism	Lipid metabolism	Steroid hormone biosynthesis	map00140	5
Human Diseases	Cancers: Overview	Choline metabolism in cancer	map05231	4
Organismal Systems	Nervous system	Retrograde endocannabinoid signaling	map04723	4
Environmental Information Processing	Signal transduction	Sphingolipid signaling pathway	map04071	4
Human Diseases	Neurodegenerative diseases	Parkinson's disease	map05012	4
Metabolism	Amino acid metabolism	Phenylalanine, tyrosine and tryptophan biosynthesis	map00400	4
Human Diseases	Substance dependence	Alcoholism	map05034	4
Metabolism	Energy metabolism	Sulfur metabolism	map00920	4
Metabolism	Biosynthesis of other secondary metabolites	Monobactam biosynthesis	map00261	4
Metabolism	Metabolism of other amino acids	beta-Alanine metabolism	map00410	4
Organismal Systems	Digestive system	Bile secretion	map04976	4

Metabolism	Carbohydrate metabolism	C5-Branched dibasic acid metabolism	map00660	4
Metabolism	Amino acid metabolism	Alanine, aspartate and glutamate metabolism	map00250	4
Metabolism	Amino acid metabolism	Arginine biosynthesis	map00220	4
Metabolism	Amino acid metabolism	Valine, leucine and isoleucine biosynthesis	map00290	4
Metabolism	Metabolism of cofactors and vitamins	Nicotinate and nicotinamide metabolism	map00760	4
Organismal Systems	Nervous system	Serotonergic synapse	map04726	4
Environmental Information Processing	Signal transduction	cAMP signaling pathway	map04024	4
Metabolism	Amino acid metabolism	Histidine metabolism	map00340	4
Organismal Systems	Digestive system	Vitamin digestion and absorption	map04977	4
Organismal Systems	Endocrine system	Glucagon signaling pathway	map04922	4
Organismal Systems	Nervous system	GABAergic synapse	map04727	4
Human Diseases	Cancers: Overview	Pathways in cancer	map05200	4
Human Diseases	Endocrine and metabolic	Insulin resistance	map04931	3
Metabolism	Metabolism of other amino acids	Taurine and hypotaurine metabolism	map00430	3
Human Diseases	Substance dependence	Amphetamine addiction	map05031	3
Human Diseases	Substance dependence	Cocaine addiction	map05030	3
Metabolism	Metabolism of cofactors and vitamins	Pantothenate and CoA biosynthesis	map00770	3
Metabolism	Amino acid metabolism	Cysteine and methionine metabolism	map00270	3
Organismal Systems	Nervous system	Cholinergic synapse	map04725	3
Human Diseases	Infectious diseases:	Amoebiasis	map05146	3
Metabolism	Carbohydrate metabolism	Citrate cycle (TCA cycle)	map00020	3
Metabolism	Carbohydrate metabolism	Propanoate metabolism	map00640	3
Organismal Systems	Digestive system	Carbohydrate digestion and absorption	map04973	3
Organismal Systems	Excretory system	Proximal tubule bicarbonate reclamation	map04964	3
Organismal Systems	Nervous system	Glutamatergic synapse	map04724	3
Metabolism	Carbohydrate metabolism	Pyruvate metabolism	map00620	3
Metabolism	Metabolism of other amino acids	D-Arginine and D-ornithine metabolism	map00472	3
Metabolism	Lipid metabolism	alpha-Linolenic acid metabolism	map00592	2
Metabolism	Lipid metabolism	Ether lipid metabolism	map00565	2
Human Diseases	Infectious diseases: Parasitic	Leishmaniasis	map05140	2
Metabolism	Metabolism of cofactors and vitamins	Ubiquinone and other terpenoid- quinone biosynthesis	map00130	2
Organismal Systems	Endocrine system	Melanogenesis	map04916	2
Organismal Systems	Nervous system	Dopaminergic synapse	map04728	2
Metabolism	Energy metabolism	Oxidative phosphorylation	map00190	2
Environmental Information Processing	Signal transduction	cGMP-PKG signaling pathway	map04022	2
Human Diseases	Infectious diseases: Parasitic	African trypanosomiasis	map05143	2
Human Diseases	Substance dependence	Morphine addiction	map05032	2
Metabolism	Energy metabolism	Nitrogen metabolism	map00910	2

Metabolism	Metabolism of other amino acids	D-Glutamine and D-glutamate metabolism	map00471	2
Metabolism	Metabolism of other amino acids	Glutathione metabolism	map00480	2
Organismal Systems	Aging	Longevity regulating pathway - worm	map04212	2
Cellular Processes	Cellular community - eukaryotes	Gap junction	map04540	2
Organismal Systems	Circulatory system	Vascular smooth muscle contraction	map04270	2
Organismal Systems	Endocrine system	Regulation of lipolysis in adipocytes	map04923	2
Organismal Systems	Endocrine system	Renin secretion	map04924	2
Environmental Information Processing	Signal transduction	Phospholipase D signaling pathway	map04072	2
Human Diseases	Drug resistance: Antineoplastic	Endocrine resistance	map01522	2
Human Diseases	Infectious diseases: Parasitic	Chagas disease (American trypanosomiasis)	map05142	2
Human Diseases	Neurodegenerative diseases	Amyotrophic lateral sclerosis (ALS)	map05014	2
Metabolism	Amino acid metabolism	Valine, leucine and isoleucine degradation	map00280	2
Metabolism	Biosynthesis of other secondary metabolites	Neomycin, kanamycin and gentamicin biosynthesis	map00524	2
Metabolism	Carbohydrate metabolism	Amino sugar and nucleotide sugar metabolism	map00520	2
Metabolism	Global and overview maps	Fatty acid metabolism	map01212	2
Metabolism	Lipid metabolism	Fatty acid degradation	map00071	2
Metabolism	Metabolism of cofactors and vitamins	Porphyrin and chlorophyll metabolism	map00860	2
Metabolism	Xenobiotics biodegradation and metabolism	Drug metabolism - cytochrome P450	map00982	2
Organismal Systems	Endocrine system	Ovarian steroidogenesis	map04913	2
Organismal Systems	Environmental adaptation	Circadian entrainment	map04713	2
Organismal Systems	Nervous system	Long-term potentiation	map04720	2
Metabolism	Lipid metabolism	Linoleic acid metabolism	map00591	1
Cellular Processes	Transport and catabolism	Autophagy - animal	map04140	1
Human Diseases	Infectious diseases: Bacterial	Pathogenic Escherichia coli infection	map05130	1
Metabolism	Glycan biosynthesis and metabolism	Glycosylphosphatidylinositol (GPI)-anchor biosynthesis	map00563	1
Human Diseases	Endocrine and metabolic diseases	AGE-RAGE signaling pathway in diabetic complications	map04933	1
Organismal Systems	Endocrine system	Adipocytokine signaling pathway	map04920	1
Organismal Systems	Nervous system	Neurotrophin signaling pathway	map04722	1
Metabolism	Lipid metabolism	Primary bile acid biosynthesis	map00120	1
Metabolism	Metabolism of cofactors and vitamins	Thiamine metabolism	map00730	1
Organismal Systems	Endocrine system	Prolactin signaling pathway	map04917	1
Human Diseases	Cancers: Overview	Chemical carcinogenesis	map05204	1
Metabolism	Biosynthesis of other secondary metabolites	Caffeine metabolism	map00232	1
Human Diseases	Drug resistance: Antineoplastic	Antifolate resistance	map01523	1
Human Diseases	Immune diseases	Systemic lupus erythematosus	map05322	1
Metabolism	Amino acid metabolism	Lysine degradation	map00310	1
Cellular Processes	Cell growth and death	Oocyte meiosis	map04114	1

Drug Development	Target-based classification: Nuclear receptors	Progesterone, androgen and estrogen receptor agonists/antagonists	map07226	1
Environmental Information Processing	Signal transduction	Apelin signaling pathway	map04371	1
Environmental Information Processing	Signal transduction	Calcium signaling pathway	map04020	1
Environmental Information Processing	Signal transduction	FoxO signaling pathway	map04068	1
Environmental Information Processing	Signal transduction	Hedgehog signaling pathway	map04340	1
Information Processing	Signal transduction	MAPK signaling pathway	map04010	1
Environmental Information Processing	Signal transduction	Rap1 signaling pathway	map04015	1
Information Processing	Signal transduction	Ras signaling pathway	map04014	1
Human Diseases	Cancers: Specific types	Non-small cell lung cancer	map05223	1
Human Diseases	Cancers: Specific types	Prostate cancer	map05215	1
Human Diseases	Cancers: Specific types	Renal cell carcinoma	map05211	1
Human Diseases	Cancers: Specific types	Small cell lung cancer	map05222	1
Human Diseases	Cardiovascular diseases	Dilated cardiomyopathy	map05414	1
Human Diseases	Infectious diseases: Bacterial	Pertussis	map05133	1
Human Diseases	Infectious diseases: Bacterial	Salmonella infection	map05132	1
Human Diseases	Infectious diseases: Bacterial	Vibrio cholerae infection	map05110	1
Human Diseases	Infectious diseases: Parasitic	Toxoplasmosis	map05145	1
Human Diseases	Infectious diseases: Viral	HTLV-I infection	map05166	1
Human Diseases	Neurodegenerative diseases	Huntington's disease	map05016	1
Human Diseases	Neurodegenerative diseases	Prion diseases	map05020	1
Human Diseases	Substance dependence	Nicotine addiction	map05033	1
Metabolism	Carbohydrate metabolism	Ascorbate and aldarate metabolism	map00053	1
Metabolism	Carbohydrate metabolism	Fructose and mannose metabolism	map00051	1
Metabolism	Carbohydrate metabolism	Glycolysis / Gluconeogenesis	map00010	1
Metabolism	Carbohydrate metabolism	Pentose and glucuronate interconversions	map00040	1
Metabolism	Carbohydrate metabolism	Starch and sucrose metabolism	map00500	1
Metabolism	Glycan biosynthesis and metabolism	Glycosaminoglycan biosynthesis - heparan sulfate / heparin	map00534	1
Metabolism	Lipid metabolism	Fatty acid elongation	map00062	1
Metabolism	Metabolism of cofactors and vitamins	Retinol metabolism	map00830	1
Metabolism	Metabolism of cofactors and vitamins	Riboflavin metabolism	map00740	1
Metabolism	Metabolism of cofactors and vitamins	Vitamin B6 metabolism	map00750	1
Metabolism	Metabolism of other amino acids	Phosphonate and phosphinate metabolism	map00440	1
Metabolism	Xenobiotics biodegradation and metabolism	Drug metabolism - other enzymes	map00983	1
Organismal Systems	Aging	Longevity regulating pathway	map04211	1
Organismal Systems	Aging	Longevity regulating pathway - multiple species	map04213	1

Organismal Systems	Circulatory system	Adrenergic signaling in cardiomyocytes	map04261	1
Organismal Systems	Digestive system	Gastric acid secretion	map04971	1
Organismal Systems	Digestive system	Pancreatic secretion	map04972	1
Organismal Systems	Digestive system	Salivary secretion	map04970	1
Organismal Systems	Endocrine system	Aldosterone synthesis and secretion	map04925	1
Organismal Systems	Endocrine system	Estrogen signaling pathway	map04915	1
Organismal Systems	Endocrine system	GnRH signaling pathway	map04912	1
Organismal Systems	Endocrine system	Insulin secretion	map04911	1
Organismal Systems	Endocrine system	Insulin signaling pathway	map04910	1
Organismal Systems	Endocrine system	Oxytocin signaling pathway	map04921	1
Organismal Systems	Endocrine system	Progesterone-mediated oocyte maturation	map04914	1
Organismal Systems	Endocrine system	Thyroid hormone signaling pathway	map04919	1
Organismal Systems	Endocrine system	Thyroid hormone synthesis	map04918	1
Organismal Systems	Environmental adaptation	Circadian rhythm	map04710	1
Organismal Systems	Excretory system	Aldosterone-regulated sodium reabsorption	map04960	1
Organismal Systems	Excretory system	Endocrine and other factor- regulated calcium reabsorption	map04961	1
Organismal Systems	Excretory system	Vasopressin-regulated water reabsorption	map04962	1
Organismal Systems	Immune system	Chemokine signaling pathway	map04062	1
Organismal Systems	Immune system	Fc epsilon RI signaling pathway	map04664	1
Organismal Systems	Immune system	Intestinal immune network for IgA production	map04672	1
Organismal Systems	Immune system	Leukocyte transendothelial migration	map04670	1
Organismal Systems	Immune system	Platelet activation	map04611	1
Organismal Systems	Immune system	Th17 cell differentiation	map04659	1
Organismal Systems	Nervous system	Long-term depression	map04730	1
Organismal Systems	Nervous system	Synaptic vesicle cycle	map04721	1
Organismal Systems	Sensory system	Inflammatory mediator regulation of TRP channels	map04750	1
Organismal Systems	Sensory system	Olfactory transduction	map04740	1
Organismal Systems	Sensory system	Phototransduction - fly	map04745	1